2000 IEEE. Personal use of this material is permitted. However, permission to reprint/republish this material for advertising or promotional purposes or for creating new collective works for resale or redistribution to servers or lists, or to reuse any copyrighted component of this work in other works must be obtained from the IEEE.

IEEE Transactions on Microwave Theory and Techniques
Volume 48 Number 4, April 2000

Table of Contents for this issue

Complete paper in PDF format

On Nonlinear Modeling of Microwave Devices Using Interpolating Wavelets

Mikhail Toupikov, Member, IEEE Guangwen (George) Pan, Senior Member, IEEE and Barry K. Gilbert Fellow, IEEE

Page 500.

Abstract:

Nonlinear semiconductor devices are modeled using the sparse point representation based upon interpolating wavelets. The functions of potential,fields, electron, and hole current densities inside the device are represented by a twofold expansion in scaling functions and wavelets. In most regions where the functions are smoothly varying, only scaling functions are employed as the bases. In contrast, in small regions with sharp material or field variations,additional basis functions, i.e., wavelets, are introduced. A nonuniform mesh generated in this manner is fully adaptive, dynamic, and object oriented. Examples of device simulations are presented, demonstrating good agreement with published literature and commercial software. The numerical examples also show substantial savings in computer memory for electrically large problems.

References

  1. C.-N. Kuo, B. Houshmand and T. Itoh, "Full-wave analysis of packaged microwave circuits with active and nonlinear devices: A FDTD approach", IEEE Trans. Microwave Theory Tech., vol. 44, pp.  819-829, May  1997.
  2. S. El-Ghazaly and T. Itoh, "Electromagnetic interfacing of semiconductor devices and circuits", in IEEE MTT-S Int. Microwave Symp. Dig., June 1997, pp.  151-154. 
  3. I. Daubechies, Ten Lectures on Wavelets, Philadelphia, PA: SIAM, 1992.
  4. G. Wang and G. Pan, "Full wave analysis of microstrip floating structures by wavelet expansion method", IEEE Trans. Microwave Theory Tech., vol. 43, pp.  131-142, Jan.  1995.
  5. X. Zhu and G. Pan, "On application of fast and adaptive periodic Battle-Lemarie wavelets to modeling of multiple lossy transmission lines", J. Comput. Phys., vol. 132, pp.  299-311, Apr.  1997.
  6. B. Jawerth and W. Sweldens, "An overview of wavelet based multiresolution analyses", SIAM Rev., vol. 36, no. 3, pp.  377-412, Sept.  1994.
  7. M. Krumpholz, H. G. Winful and L. P. B Katehi, "Nonlinear time domain modeling by multiresolution time domain (MRTD)", IEEE Trans. Microwave Theory Tech., vol. 45, pp.  385-395, Mar.  1997.
  8. E. M. Tentzeris, R. L. Robertson, L. P. B. Katehi and A. Cangellaris, "Space and time adaptive gridding using MRTD technique", in IEEE MTT-S Int. Microwave Symp. Dig., 1997, pp.  337-340. 
  9. L. Jameson, "On the wavelet optimized finite difference method", NASA Langley Res. Center, Hampton, VA, Tech. Rep. ICASE 94-9, Mar. 1994.
  10. G. Beylkin and J. Keiser, "On the adaptive numerical solution of nonlinear partial differential equations in wavelet bases", J. Comput. Phys., vol. 132, pp.  233-259, 1997.
  11. M. Holmström, "Solving hyperbolic PDE's using interpolating wavelets", Uppsala Univ., Uppsala, Sweden, Tech. Rep. 189/1996, 1996.
  12. G. Deslauriers and S. Dubuc, "Symmetric iterative interpolation processes", Construct. Approx., vol. 5, no. 1, pp.  49-68, 1989.
  13. D. L. Donoho, "Interpolating wavelet transforms", Dept. Statistics,Stanford Univ., Stanford, CA, preprint, 1992.
  14. W. Sweldens, "The lifting scheme: A construction of second generation wavelets", Siam J. Math. Anal., vol. 29, no. 2, pp.  511-546, 1997.
  15. A. H. Marshak, "Carrier densities and emitter efficiency in degenerate materials with position dependent band structure", Solid State Electron., vol. 21, pp.  429-434, 1978.
  16. A. De Mari, "An accurate numerical steady-state one dimensional solution of the p-n Junction", Solid State Electron., vol. 11, pp.  33-58, 1968.
  17. P. Markowich, The Stationary Semiconductor Device Equations, Berlin: Germany: Springer-Verlag, 1985.
  18. D. L. Scharfetter and H. K. Gummel, "Large-signal analysis of a silicon read diode oscillator", IEEE Trans. Electron Devices, vol. ED-16, pp.  64-77,  Jan.  1969.
  19. J. M. Ortega and W. G. Poole, An Introduction to Numerical Methods for Differential Equations, New York: Pitman, 1981.
  20. H. A. van der Vorst, "Bi-CGSTAB: A fast and smoothly converging variant of Bi-CG for the solution of nonsymmetric linear systems", SIAM J. Sci. Statist. Comput., vol. 13, no. 2, pp.  631-644, Mar.  1992.
  21. M. S. Adler, "A method for terminating mesh lines in finite difference formulations of the semiconductor device equations", Solid State Electron., vol. 23, pp.  845-853, 1980.
  22. A. F. Franz, G. A. Franz, S. Selberherr, C. Ringhofer and P. Markovich, "Finite boxes-A generalization of the finite difference method suitable for semiconductor device simulation", IEEE Trans. Electron Devices, vol. ED-30, pp.  1070 -1082, Sept.  1983.
  23. J. Bürgler, Discretization and Grid Adaptation in Semiconductor Device Modeling, Konstanz: Germany: Hartung-Gorre, 1990.
  24. M. Shur, Physics of Semiconductor Devices, Englewood Cliffs, NJ: Prentice-Hall, 1990, sec. 2-2.