2000 IEEE. Personal use of this material is permitted. However, permission to reprint/republish this material for advertising or promotional purposes or for creating new collective works for resale or redistribution to servers or lists, or to reuse any copyrighted component of this work in other works must be obtained from the IEEE.

IEEE Transactions on Microwave Theory and Techniques
Volume 48 Number 4, April 2000

Table of Contents for this issue

Complete paper in PDF format

Moment-Method Analysis of Arbitrary 3-D Metallic N-Port Waveguide Structures

Rainer Bunger, Member, IEEE and Fritz Arndt Fellow, IEEE

Page 531.

Abstract:

Moment-method analysis of arbitrarily shaped perfectly conducting ("metallic") waveguide structures with N waveguide ports is presented that is based on the free-space Green's function. Utilizing the Kirchhoff-Huygens principle, the problem is formulated in terms of the electric-field integral equation. The eigenvectors of the waveguide port sections and the Rao-Wilton-Glisson functions for triangular patches are used as basis functions for the magnetic and electric surface current densities, respectively. The accuracy of the method is verified by measurements or reference values. Its versatility is demonstrated at several design examples of practical interest, such as a lateral coax-fed waveguide,a twisted waveguide, and a waffle-iron filter with round teeth.

References

  1. R. F. Harrington, Field Computation by Moment Method, New York: Macmillan, 1968.
  2. H. Auda and R. F. Harrington, "Inductive posts and diaphragms of arbitrary shape and number in a rectangular waveguide", IEEE Trans. Microwave Theory Tech., vol. MTT-32, pp.  606-613, June  1984.
  3. J. M. Jarem, "A multifilament method-of-moments solution for the input impedance of a probe-excited semi-infinite waveguide", IEEE Trans. Microwave Theory Tech., vol. MTT-35, pp.  14 -19, Jan.  1987.
  4. X.-H. Zhu, D.-Z. Chen and S.-J. Wang, "A multistrip moment method technique and its application to the post problem in a circular waveguide", IEEE Trans. Microwave Theory Tech., vol. 39, pp.  1762-1766, Oct.  1991 .
  5. O. M. C. P. Filho and L. C. da Silva, "Scattering matrix of cylindrical posts centered on the walls of rectangular waveguides", IEEE Trans. Microwave Theory Tech., vol. 42, pp.  1198-1206, July  1994.
  6. M. S. Leong, L. W. Li, P. S. Kooi, T. S. Yeo and S. L. Ho, "Input impedance of a coaxial probe located inside a rectangular cavity: Theory and experiment", IEEE Trans. Microwave Theory Tech., vol. 44, pp.  1161-1164, July  1996.
  7. K. Mahadevan and S. Gosh, "Precision analysis of a four-port rectangular orthomode transducer using the method of moments", in IEEE AP-S Symp. Dig. , Baltimore, MD, June 1996, pp.  1988-1991. 
  8. J. R. Mautz and R. F. Harrington, "A generalized network formulation for aperture problems", IEEE Trans. Antennas Propagat., vol. AP-24, pp.  870-873,  MONTH  1976.
  9. H. Auda and R. F. Harrington, "A moment solution for waveguide junction problems", IEEE Trans. Microwave Theory Tech., vol. MTT-31, pp.  515-520, July  1983.
  10. E. Kühn and V. Hombach, "Computer-aided analysis of corrugated horns with axial ring or ring-loaded radial slots", in Proc. ICAP'83-Part I,, pp.  127-131. 
  11. R. E. Collin, Field Theory of Guided Waves, New York: IEEE Press, 1991.
  12. T. K. Sarkar, S. M. Rao and A. R. Djordjevic, "Electromagnetic scattering and radiation from finite microstrip structures", IEEE Trans. Microwave Theory Tech., vol. 38, pp.  1568-1575, Nov.  1990.
  13. U. Jakobus and F. M. Landstorfer, "Novel basis function for the equivalent magnetic current in the method of moments solution of dielectric scattering problems", Electron. Lett., vol. 29, pp.  1272-1273, July  1993.
  14. X. Q. Sheng, J.-M. Jin, J. Song, W. C. Chew and C.-C. Lu, "Solution of combined-field integral equation using multilevel fast multipole algorithm for scattering by homogeneous bodies", IEEE Trans. Antennas Propagat., vol. 46, pp.  1718-1726, Nov.  1998 .
  15. S. M. Rao, D. R. Wilton and A. W. Glisson, "Electromagnetic scattering by surfaces of arbitrary shape", IEEE Trans. Antennas Propagat., vol. AP-30, pp.  409-418,  May  1982.
  16. D. R. Wilton, S. M. Rao, A. W. Glisson, D. H. Schaubert, O. M. Al-Bundak and C. M. Butler, "Potential integrals for uniform and linear source distributions on polygonal and polyhedral domains", IEEE Trans. Antennas Propagat., vol. AP-32, pp.  276-281, Mar.  1984.
  17. P. C. Hammer, O. P. Marlowe and A. H. Stroud, "Numerical integration over simplexes and cones", Math. Tables  Aids Comput., vol. 10, pp.  130-137, 1956.
  18. J. M. Reiter and F. Arndt, "Rigorous analysis of arbitrarily shaped H -and E -plane discontinuities in rectangular waveguides by a full-wave boundary contour mode-matching method", IEEE Trans. Microwave Theory Tech., vol. 43, pp.  796-801, Apr.  1995.
  19. R. Beyer and F. Arndt, "The generalized scattering matrix separation technique combined with the MM/FE method for the efficient modal analysis of a comprehensive class of 3-D passive waveguide circuits", in IEEE MTT-S Int. Microwave Symp. Dig., Orlando, FL, May 1995, pp.  277-280. 
  20. G. L. Matthaei, L. Young and E. M. T. Jones, Microwave Filters, Impedance-Matching Networks, and Coupling Structures, New York: McGraw-Hill, 1964, p.  408. 
  21. R. Lotz, J. Ritter and F. Arndt, "3-D subgrid technique for the finite difference method in the frequency domain", in IEEE MTT-S Int. Microwave Symp. Dig. , Baltimore, MD, June 1998, pp.  1739-1742.