2000 IEEE. Personal use of this material is permitted. However, permission to reprint/republish this material for advertising or promotional purposes or for creating new collective works for resale or redistribution to servers or lists, or to reuse any copyrighted component of this work in other works must be obtained from the IEEE.

IEEE Transactions on Microwave Theory and Techniques
Volume 48 Number 4, April 2000

Table of Contents for this issue

Complete paper in PDF format

Nonreciprocity and the Optimum Operation of Ferrite Coupled Lines

Kang Xie, Member, IEEE and Lionel E. Davis Fellow, IEEE

Page 562.

Abstract:

The first full-wave normal-mode analysis of ferrite coupled lines (FCL's) magnetized in the longitudinal direction is presented in this paper. It is found that the tangential and axial components of the guided electric and magnetic fields undergo a different change in the process of reversing the direction of magnetization. These changes cause the same input wave to decompose into the eigenmodes of the FCL differently for different direction of magnetization and, consequently, cause the nonreciprocal behavior of the magnetized FCL. A new optimum nonreciprocal operation condition is obtained,and applications to FCL circulators built on microstrips and striplines are discussed.

References

  1. L. E. Davis and D. B. Sillars, "Millimetric nonreciprocal coupled-slot finline components", IEEE Trans. Microwave Theory Tech., vol. MTT-34, pp.  804-808, July  1986.
  2. J. Mazur and M. Mrozowski, "On the mode coupling in longitudinally magnetized wave-guiding structures", IEEE Trans. Microwave Theory Tech., vol. 37, pp.  159-165, Jan.  1989.
  3. C. S. Teoh and L. E. Davis, "Normal-mode analysis of ferrite-coupled-lines using microstrips or slotlines", IEEE Trans. Microwave Theory Tech., vol. 43, pp.  2991-2998, Dec.  1995.
  4. J. Mazur, "Millimeter-wave three-port finline circulator using distributed coupling effect", IEEE Trans. Microwave Theory Tech., vol. 41, pp.  1067-1070, June  1993.
  5. C. S. Teoh and L. E. Davis, ""Optimized design of novel microstrip FCL circulators,"unpublished",
  6. P. R. McIsaac, "Bidirectionality in gyrotropic waveguides", IEEE Trans. Microwave Theory Tech., vol. MTT-24, pp.  223-226, Apr.  1976.
  7. A. Konrad, "Vector variational formulation of electromagnetic fields in anisotropic media", IEEE Trans. Microwave Theory Tech., vol. MTT-24, pp.  553-559, Sept.  1976.
  8. C. S. Teoh, "Ferrite-coupled planar microwave devices", Ph.D. dissertation, Dept. Elect. Eng. Electron., UMIST, Manchester, U.K., 1996.
  9. M. Koshiba and K. Inoue, "Simple and efficient finite-element analysis of microwave and optical waveguides", IEEE Trans. Microwave Theory Tech., vol. 40, pp.  371-377, Feb.  1992.
  10. D. M. Pozar, Microwave Engineering, Reading, MA: Addison-Wesley, 1990, pp.  251-259. 
  11. P. K. Ikalainen and G. L. Matthaei, "Wide-band, forward coupling microstrip hybrids with high directionality", IEEE Trans. Microwave Theory Tech., vol. MTT-35, pp.  719-725, Aug.  1987.
  12. R. A. Waldron, "Electromagnetic wave propagation in cylindrical waveguides containing gyromagnetic media", J. British Inst. Radio Eng., vol. 18, pp.  597-612, Oct.  1958.