2000 IEEE. Personal use of this material is permitted. However, permission to reprint/republish this material for advertising or promotional purposes or for creating new collective works for resale or redistribution to servers or lists, or to reuse any copyrighted component of this work in other works must be obtained from the IEEE.

IEEE Transactions on Microwave Theory and Techniques
Volume 48 Number 4, April 2000

Table of Contents for this issue

Complete paper in PDF format

Period-Doubling Analysis and Chaos Detection Using Commercial Harmonic Balance Simulators

Juan-Mari Collantes, Member, IEEE and Almudena Suárez Member, IEEE

Page 574.

Abstract:

Two of the most common phenomena leading to chaos are the period-doubling cascade and the formation of transverse homoclinic orbits. In this paper,a bifurcation analysis technique is presented for the prediction of both phenomena in microwave circuits. The fact that the technique is based on the use of commercial harmonic balance software constitutes a major advantage for the circuit designer. The accuracy of the method relies on the capability to detect and calculate the successive period doublings, which, in period-doubling cascades,provides a good estimation of the parameter values for the onset of chaos. Another important aspect of the new method is the equilibrium point determination,necessary for the prediction of the homoclinic chaos. The accuracy in the calculation of the limit cycle, taking into account the most influential period doublings, ensures a good estimation of the parameter values for the formation of possible homoclinic orbits. In order to validate the method, it is initially applied to an RL-diode circuit, with a period-doubling route to chaos. A practical microwave frequency doubler is then analyzed,determining its parameter ranges for stable operation. Excellent results are obtained in comparison with the time-domain simulations. As an example of the method's capabilities for the prediction of homoclinic chaos, the bifurcation loci of Chua's circuit, with a cubic nonlinearity, are obtained and they agree closely with time-domain simulations.

References

  1. A. Suárez, J. Morales and R. Quéré, "Chaos prediction in a MMIC frequency divider in millimetric band", IEEE Microwave Guided Wave Lett., vol. 8, pp.  21-23, Jan.  1998.
  2. L. M. Pecora and T. L. Carroll, "Synchronization in chaotic systems", Phys. Rev. Lett., vol. 64, pp.  821-824, 1990.
  3. C. P. Silva and A. M. Young, "Implementing RF broad-band chaotic oscillators: Design issues and results", in Proc. IEEE Int. Circuits Syst. Symp., Monterey, CA, May 1998, pp.  489- 493. 
  4. C. P. Silva, "Shil'nikov theorem-A tutorial", IEEE Trans. Circuits Syst., vol. 40, pp.  675-682, Oct.  1993 .
  5. J. Guckenheimer and P. Holmes, Nonlinear Oscillations, Dynamical Systems and Bifurcations of Vector Fields, 3rd ed.   Berlin: Germany: Springer-Verlag, 1990.
  6. S. Wiggins, Introduction to Applied Nonlinear Dynamical Systems and Chaos, Berlin: Germany: Springer-Verlag, 1990.
  7. R. Genesio and A. Tesi, "A harmonic balance approach for chaos prediction: Chua's circuit", Int. J. Bifurcation Chaos, vol. 2, no.  1, pp.  61-79, Jan.  1992.
  8. M. Odyniec, "Nonlinear synchronized LC oscillators: Theory and simulation", IEEE Trans. Microwave Theory Tech., vol. 41, pp.  774-780, May  1993.
  9. R. Quéré, E. Ngoya, M. Camiade, A. Suárez, M. Hessane and J. Obregón, "Large signal design of broad-band monolithic frequency dividers and phase-locked oscillators", IEEE Trans. Microwave Theory Tech., vol. 41, pp.  1928-1938, Nov.  1993.
  10. T. Matsumoto, "Chaos in electronic circuits", IEEE Trans. Circuits Syst. (Special Issue on Chaotic Systems), vol. 75, pp.  1033-1057,  Aug.  1987.
  11. V. Rizzoli and A. Lipparini, "General stability analysis of periodic steady state regimes in nonlinear microwave circuits", IEEE Trans. Microwave Theory Tech., vol. MTT-33, pp.  30-37, Jan.  1985.
  12. V. Rizzoli and A. Neri, "State of the art and present trends in nonlinear microwave CAD techniques", IEEE Trans. Microwave Theory Tech., vol. 36, pp.  343-356, Feb.  1988.
  13. M. J. Hasler, "Electrical circuits with chaotic behavior", IEEE Trans. Circuits Syst. (Special Issue on Chaotic Systems), vol. 75, pp.  1009-1021, Aug.  1987.
  14. S. Basu, S. M. Maas and T. Itoh, "Stability analysis for large signal design of a microwave frequency doubler", IEEE Trans. Microwave Theory Tech., vol. 43, pp.  2890-2898, Dec.  1995.
  15. A. Suárez and J. M. Collantes, "Chaos detection in microwave circuits using harmonic balance commercial simulators", in IEEE MTT-S Int. Microwave Symp. Dig., Baltimore, MD, June 1998, pp.  271-274. 
  16. V. Iglesias, A. Suárez and J. L. García, "New technique for the determination through commercial software of the stable-operation parameter ranges in nonlinear microwave circuits", IEEE Microwave Guided Wave Lett., vol. 8, pp.  424-426, Dec.  1998.