2000 IEEE. Personal use of this material is permitted. However, permission to reprint/republish this material for advertising or promotional purposes or for creating new collective works for resale or redistribution to servers or lists, or to reuse any copyrighted component of this work in other works must be obtained from the IEEE.

IEEE Transactions on Microwave Theory and Techniques
Volume 48 Number 4, April 2000

Table of Contents for this issue

Complete paper in PDF format

Reduction of Numerical Dispersion in FDTD Method Through Artificial Anisotropy

Jaakko S. Juntunen and Theodoros D. Tsiboukis Member, IEEE

Page 582.

Abstract:

In this paper, a simple and computationally low-cost modification of the standard finite-difference time-domain (FDTD) algorithm is presented to reduce numerical dispersion in the algorithm. Both two-and three-dimensional cases are considered. It is shown that the maximum error in phase velocity can be reduced by a factor of 2-7, depending on the shape of the FDTD cell. Although the reduction procedure is optimal for only single frequency,numerical examples show that the proposed method can also improve the accuracy significantly in wide-band inhomogeneous problems.

References

  1. A. C. Cangellaris, "Numerical stability and numerical dispersion of a compact 2-D/FDTD method used for the dispersion analysis of waveguides ", IEEE Microwave Guided Wave Lett., vol. 3, pp.  3-5, Jan.   1993.
  2. J. G. Maloney, K. L. Schlager and G. S. Smith, "A simple FDTD model for transient excitation of antennas by transmission lines", IEEE Trans. Antennas Propagat., vol. 42, pp.  289-292, Feb.  1994.
  3. A. Taflove and K. R. Umashankar, "The finite-difference time-domain method for numerical modeling of electromagnetic wave interactions", Electromag., vol. 10, no. 1-2, pp.  105-126, 1990.
  4. J. Ala-Laurinaho, T. Hirvonen, J. Tuovinen and A. V. Räisänen, "Numerical modeling of a nonuniform grating with FDTD", Microwave Opt. Technol. Lett., vol. 15, pp.  134-139, June  1997.
  5. Z. Chen, M. M. Ney and W. J. R. Hoefer, "A new finite-difference time-domain formulation and its equivalence with the TLM symmetrical condensed node", IEEE Trans. Microwave Theory Tech., vol. 39, pp.  2160-2169, Dec.  1991 .
  6. L. De Menezes, C. Eswarappa and W. J. R. Hoefer, "A comparative study of dispersion errors and performance of absorbing boundary conditions in SCN-TLM and FDTD", 13th Annu. Rev. Progress Appl. Comput. Electromag. Dig., pp.  673-678, March  17-21, 1997 .
  7. M. Krumpholz and P. Russer, "On the dispersion in TLM and FDTD", IEEE Trans. Microwave Theory Tech., vol. 42, pp.  1275 -1279, July  1994.
  8. A. Taflove, Computational Electrodynamics-The Finite-Difference Time-Domain Method , Norwood, MA: Artech House, 1995.
  9. X. Zhang and K. K. Mei, "Time-domain finite difference approach to the calculation of the frequency-dependent characteristics of microstrip discontinuities", IEEE Trans. Microwave Theory Tech., vol. 36, pp.  1775-1787, Dec.  1988.
  10. A. P. Zhao, J. Juntunen and A. V. Räisänen, "Generalized material independent PML absorbers for the FDTD simulation of electromagnetic waves in arbitrary anisotropic dielectric and magnetic media", IEEE Microwave Guided Wave Lett., vol. 8, pp.  52-54, Feb.  1998.
  11. A. P. Zhao, A. V. Räisänen and S. R. Cvetkovic, "A fast and efficient FDTD algorithm for the analysis of planar microstrip discontinuities by using a simple source excitation scheme", IEEE Microwave Guided Wave Lett., vol. 5, pp.  341-323, Oct.  1995.