2000 IEEE. Personal use of this material is permitted. However, permission to reprint/republish this material for advertising or promotional purposes or for creating new collective works for resale or redistribution to servers or lists, or to reuse any copyrighted component of this work in other works must be obtained from the IEEE.

IEEE Transactions on Microwave Theory and Techniques
Volume 48 Number 4, April 2000

Table of Contents for this issue

Complete paper in PDF format

Analysis of Inhomogeneously Filled Waveguides Using a Bi-Orthonormal-Basis Method

Enrique Silvestre, Miguel Angel Abián, Benito Gimeno, Albert Ferrando, Miguel V. Andrés, Member, IEEE and Vicente E. Boria

Page 589.

Abstract:

A general theoretical formulation to analyze inhomogeneously filled waveguides with lossy dielectrics is presented in this paper. The wave equations for the tranverse-field components are written in terms of a nonself-adjoint linear operator and its adjoint. The eigenvectors of this pair of linear operators define a biorthonormal-basis, allowing for a matrix representation of the wave equations in the basis of an auxiliary waveguide. Thus, the problem of solving a system of differential equations is transformed into a linear matrix eigenvalue problem. This formulation is applied to rectangular waveguides loaded with an arbitrary number of dielectric slabs centered at arbitrary points. The comparison with theoretical results available in the literature gives good agreement.

References

  1. K. A. Zaki and A. E. Atia, "Modes in dielectric-loaded waveguides and resonators", IEEE Trans. Microwave Theory Tech., vol. MTT-31, pp.  1039-1045, Dec.  1983.
  2. K. A. Zaki and C. Chen, "Intensity and distribution of hybrid-mode fields in dielectric-loaded waveguides", IEEE Trans. Microwave Theory Tech., vol. MTT-33, pp.  1442-1447, Dec.  1985.
  3. H. A. Ragheb, A. Sebak and L. Shafai, "Cutoff frequencies of circular waveguide loaded with eccentric dielectric cylinder", Proc. Inst. Elect. Eng., vol. 144, no. 1, pp.  7-12, Feb.  1997.
  4. J. Strube and F. Arndt, "Rigurous hybrid-mode analysis of the transition from rectangular waveguide to shielded dielectric image guide", IEEE Trans. Microwave Theory Tech., vol. MTT-33, pp.  391-401, May  1985 .
  5. L. Outifa, M. Delmotte and H. Jullien, "Dielectric and geometric dependence of electric field and power distribution in a waveguide heterogeneously filled with lossy dielectrics", IEEE Trans. Microwave Theory Tech., vol. 45, pp.  1154-1161, Aug.  1997.
  6. C.-C. Yu and T.-H. Chu, "Analysis of dielectric-loaded waveguide", IEEE Trans. Microwave Theory Tech., vol. 38, pp.  1333 -1338, Sept.  1990.
  7. B. M. Azizur and J. B. Davies, "Penalty function improvement of waveguide solution by finite elements", IEEE Trans. Microwave Theory Tech., vol. MTT-32, pp.  922-928, Aug.  1984.
  8. T. Angkaew, M. Matsuhara and N. Kumagai, "Finite-element analysis of waveguide modes: A novel approach that eliminates spurious modes", IEEE Trans. Microwave Theory Tech., vol. MTT-35, pp.  117-123, Feb.  1987.
  9. M. Israel and R. Miniowitz, "Hermitian finite-element method for inhomogeneous waveguides", IEEE Trans. Microwave Theory Tech., vol. 38, pp.  1319-1327, Sept.  1990.
  10. L. Nuño, J. V. Barbastre and H. Castañé, "Analysis of general lossy inhomogeneous ans anisotropic waveguides by the finite-element method (FEM) using edge elements", IEEE Trans. Microwave Theory Tech., vol. 45, pp.  446-449, Mar.  1997.
  11. A. S. Omar and K. F. Schunemann, "Scattering by material and conducting bodies inside waveguides-Part I: Theoretical formulations", IEEE Trans. Microwave Theory Tech., vol. MTT-34, pp.  266-272, Feb.   1986.
  12. A. S. Omar and K. F. Schunemann, "Complex and backward-wave modes in inhomogeneously and anisotropically filled waveguide", IEEE Trans. Microwave Theory Tech., vol. MTT-35, pp.  268-275, Mar.   1987.
  13. A. S. Omar, A. Jöstingmeier, C. Rieckmann and S. Lütgert, "Application of the GSD technique to the analysis of slot-coupled waveguides", IEEE Trans. Microwave Theory Tech., vol. 42, pp.  2139-2148, Nov.  1994.
  14. C. Rieckmann, A. Jöstingmeier and A. S. Omar, "Application of the eigenmode transformation technique for the analysis of planar transmission lines", IEEE Trans. Microwave Theory Tech., vol. 44, pp.  2479-2486, Dec.  1996.
  15. C. Rieckmann, A. S. Omar and A. Jöstingmeier, "Unified analysis of quasi TEM and higher order modes in planar transmission lines", in IEEE MTT-S Int. Microwave Symp. Dig., vol. 3, 1997, pp.  1369-1372. 
  16. T. Rozzi, L. Pierantoni and M. Farina, "Eigenvalue approach to the efficient determination of the hybrid and complex spectrum of inhomogeneous, closed waveguide", IEEE Trans. Microwave Theory Tech., vol. 45, no. 3, pp.  345-353, Mar.  1997.
  17. Z. Menachem and E. Jerby, "Transfer matrix function (TMF) for wave propagation in dielectric waveguides with arbitrary transverse profiles", IEEE Trans. Microwave Theory Tech., vol. 46, pp.  975-982, July  1998 .
  18. E. Silvestre, M. V. Andrés and P. Andrés, "Biorthonormal-basis method for vector description of optical-fiber modes", J. Ligthwave Technol., vol. 16, pp.  923-928, May  1998.
  19. A. Ferrando, E. Silvestre, J. J. Miret, P. Andrés and M. V. Andrés, "Full-vector analysis of a realistic photonic crystal fiber", Opt. Lett., vol. 24, no. 5, pp.  276-278, Mar.  1999.
  20. R. E. Collin, Field Theory of Guided Waves, 2nd ed.   New York: IEEE Press, 1991.
  21. D. G. Dudley, Mathematical Foundations for Electromagnetic Theory, 1st ed.   Piscataway, NJ: IEEE Press, 1994.
  22. P. M. Morse and H. Feshbach, Methods of Theoretical Physics, 1st ed.   New York: McGraw-Hill, 1953.
  23. C. R. Paiva and A. M. Barbosa, "A linear-operator formalism for the analysis of inhomogeneous biisotropic planar waveguides", IEEE Trans. Microwave Theory Tech., vol. 40, pp.  672-678, Apr.  1992.
  24. N. Marcuvitz, Waveguide Handbook, Stevenage: U.K.: Peregrinus, 1986.
  25. E. Schweig and W. B. Bridges, "Computer analysis of dielectric waveguides: A finite-difference method", IEEE Trans. Microwave Theory Tech., vol. MTT-32, pp.  531-541, May  1984.