2000 IEEE. Personal use of this material is permitted. However, permission to reprint/republish this material for advertising or promotional purposes or for creating new collective works for resale or redistribution to servers or lists, or to reuse any copyrighted component of this work in other works must be obtained from the IEEE.

IEEE Transactions on Microwave Theory and Techniques
Volume 48 Number 5, May 2000

Table of Contents for this issue

Complete paper in PDF format

Resonances in Heterogeneous Dielectric Bodies with Rotational Symmetry-Volume Integral-Equation Formulation

Andrzej A. Kucharski

Page 766.

Abstract:

In this paper, a method of determining resonant frequencies and field distributions in heterogeneous bodies of revolution is presented. A volume electric-field integral equation is put into modal form, and then discretized with the method of moments. In the solution process, specially defined divergenceless basis functions are used, which reduces the number of unknowns and makes the algorithm more efficient. The identification of resonances is particularly easy because of the mode separation included in the formulation.

References

  1. S. B. Cohn, "Microwave bandpass filters containing high-Q dielectric resonators", IEEE Trans. Microwave Theory Tech., vol. MTT-16, pp.  218-227, Apr.  1968.
  2. S. A. Long, M. W. McAllister and L. C. Shen, "The resonant cylindrical cavity antenna", IEEE Trans. Antennas Propagat., vol. AP-31, pp.  406-412, May  1983.
  3. A. A. Kishk, M. R. Zunoubi and D. Kajfez, "A numerical study of a dielectric disk antenna above grounded dielectric substrate", IEEE Trans. Antennas Propagat., vol. 41, pp.  813-821, June  1993.
  4. A. A. Kishk, B. Ahn and D. Kajfez, "Broadband stacked dielectric resonator", Electron. Lett., vol. 25, no. 18, pp.  1232-1233, Aug.  1989.
  5. K. L. Wong and N. C. Chen, "Analysis of a broadband hemispherical antenna with a dielectric coating", Microwave Opt. Technol. Lett., vol. 7, no.  2, pp.  73-76, 1994.
  6. B. Sauviac, P. Guillot and H. Baudrand, "Rigorous analysis of shielded cylindrical dielectric resonators by dyadic Green's functions", IEEE Trans. Microwave Theory Tech., vol. 42, pp.  1484-1493, Aug.  1994.
  7. A. W. Glisson, D. Kajfez and J. James, "Evaluation of modes in dielectric resonators using surface integral equation formulation", IEEE Trans. Microwave Theory Tech., vol. MTT-31, pp.  1023-1029, Dec.  1983.
  8. D. Kajfez, A. W. Glisson and J. James, "Computed modal field distributions for isolated dielectric resonators", IEEE Trans. Microwave Theory Tech., vol. MTT-32, pp.  1609-1616, Dec.  1984.
  9. W. Zheng, "Computation of complex resonant frequencies of isolated composite objects", IEEE Trans. Microwave Theory Tech., vol. 37, pp.  953-961, June  1989.
  10. M. S. Viola, "A new electric field integral equation for heterogeneous dielectric bodies of revolution", IEEE Trans. Microwave Theory Tech., vol. 43, pp.  230-232, Jan.  1995.
  11. D. H. Schaubert, D. R. Wilton and A. W. Glisson, "A tetrahedral modeling method for electromagnetic scattering by arbitrarily shaped inhomogeneous dielectric bodies", IEEE Trans. Antennas Propagat., vol. AP-32, pp.  77-85, Jan.  1984.
  12. A. W. Glisson and D. R. Wilton, "Simple and efficient numerical methods for problems of electromagnetic radiation and scattering from surfaces", IEEE Trans. Antennas Propagat., vol. AP-28, pp.  593-603, Sept.   1980.
  13. A. K. Abdelmageed and K. A. Michalski, "Analysis of EM scattering by conducting bodies of revolution in layered media using the discrete complex image method", in Proc. IEEE AP-S Int. Symp. Dig., vol. 1, 1995, pp.  402-405.