2000 IEEE. Personal use of this material is permitted. However, permission to reprint/republish this material for advertising or promotional purposes or for creating new collective works for resale or redistribution to servers or lists, or to reuse any copyrighted component of this work in other works must be obtained from the IEEE.

IEEE Transactions on Microwave Theory and Techniques
Volume 48 Number 5, May 2000

Table of Contents for this issue

Complete paper in PDF format

Commutation Quality Factor of Two-State Switchable Devices

Irina B. Vendik, Member, IEEE Orest G. Vendik, Member, IEEE and Erik L. Kollberg Fellow, IEEE

Page 802.

Abstract:

An unified way to characterize a two-state one-port switchable network is discussed in this paper. A figure-of-merit of the two-state one-port,called the commutation quality factor (CQF), is introduced. It can be applied to different types of switching devices (semiconductor, ferroelectric, superconductor,etc.) and used for a design of two-state components with optimal characteristics. The CQF is defined as the ratio of the input impedances of a lossless reciprocal two-port terminated in the impedance pair Z1 and Z2, provided the imaginary parts of both input impedances are zero. A simple formula is derived for a calculation of the CQF. The invariance of the CQF with respect to lossless reciprocal transformation is shown. The applicability of the CQF does not depend on the physical nature of the device. The CQF is a working tool for a selection of switching devices while designing electronically controlled microwave components and subsystems. The CQF is recommended to be used for determining the available minimum of insertion loss of a switching microwave component. Thus, the introduced CQF can be used for optimization of the switching microwave component designed.

References

  1. S. K. Koul and B. Bhat, "Microwave and millimeter wave phase shifters,"in Semiconductor and Delay Line Phase Shifters, Norwood, MA: Artech House, 1991.
  2. O. G. Vendik, M. M. Gaidukov, S. G. Kolesov, A. B. Kozyrev and A. Y. Popov, "Microwave signal limiters and commutators based on superconducting films", in Proc. 21th European Microwave Conf., vol. 1, Stuttgart, Germany,Sept. 1991, pp.  72-82. 
  3. O. G. Vendik and S. G. Kolesov, "Microwave active and nonlinear components based on high temperature superconductors", J. Phys. III France, vol. 3, pp.  1659-1673, Aug.  1993.
  4. D. I. Kaparkov, V. V. Kuznetsov, M. Löfgren and I. B. Vendik, "Nonreflective high-Tc superconductive modulator", Electron. Lett., vol. 29, pp.  1006-1007, May  1993 .
  5. D. Krafcsik, F. Ali and S. Bishop, "Broad-band low-loss 5-and 6-bit digital attenuators", in IEEE MTT-S Int. Microwave Symp. Dig., 1995, pp.  1627-1630. 
  6. I. B. Vendik, "The limitation of parameters of one-bit phase shifter based on S-N transition in high-Tc superconductors", Microwave Opt. Technol. Lett., vol. 7, no.  14, pp.  644-646, Oct.  1994.
  7. O. G. Vendik, A. B. Kozyrev and I. B. Vendik, "Tunable and switchable cryoelectronic components", in 6th Int. Superconduct. Electron. Conf., vol. 1, Berlin, Germany,June 1997, pp.  80- 82. 
  8. I. B. Vendik, O. G. Vendik, E. L. Kollberg and V. O. Sherman, "Theory of digital phase shifters based on high-Tc superconducting films", IEEE Trans. Microwave Theory Tech., vol. 47, pp.  1553 -1562, August  1999.
  9. E. L. Kollberg, J. Stake and L. Dillner, "Heterostructure barrier varactors at submillimeter waves", in Philos. Trans. R. Soc. London A, Math. Phys. Sci., vol. 354, 1996, pp.  2383-2398. 
  10. I. V. Barsky, O. G. Vendik and G. S. Khizha, "Figure of merit and quality parameter of microwave controllable devices based on semiconductor and ferroelectric components", in Proc. Leningrad Electrotech. Inst., Leningrad, Russia, 1986, pp.  3-9. 
  11. O. G. Vendik, L. T. Ter-Martirosyan, A. I. Dedyk, S. F. Karmanenko and R. A. Chakalov, "High-Tc superconductivity: New applications of ferroelectrics at Microwave frequencies", Ferroelectrics, vol. 144, no. 33, pp.  33-43, 1993.
  12. O. G. Vendik, P. K. Petrov, R. A. Chakalov, S. Gevorgian, Z. Ivanov and E. F. Carlsson, "HTS/ferroelectric CPW structures for voltage tunable phase shifters", in Proc. 27th European Microwave Conf., vol. 1, Jerusalem, Sept. 1997, pp.  196-202. 
  13. S. Kawakami, "Figure of merit associated with a variable-parameter one-port for RF switching and modulation", IEEE Trans. Circuit Theory, vol. CT-12, pp.  321-328, Mar.  1965.
  14. S. Kawakami, "Lossless reciprocal transformation and synthesis of a two-state network", IEEE Trans. Circuit Theory, vol. CT-13, pp.  128-136, Feb.  1966.
  15. S. N. Das, "Quality of a ferroelectric material", IEEE Trans. Microwave Theory Tech., vol. MTT-12, pp.  440-445, July   1964.
  16. K. Bethe, "Über das Mikrowellenverhalten Nichtlinearer Dielectrika", Philips, Aachen, Germany, Philips Res. Rep. Suppl. 2, 1970.
  17. F. A. Miranda, F. W. Van Keuls, R. R. Romanofsky and G. Subrananyan, "Tunable microwave components for Ku -and K -band satellite communications", Integrated Ferroelectrics, vol. 22, no.  1/4, pp.  269-277, 1998.
  18. J. S. Horwitz, W. Chang, A. C. Carter, J. M. Pond, S. W. Kirchofer, D. B. Chrisey, J. Levy and C. Hubert, "Structure-property relationship in ferroelecric thin films for frequency agile microwave electronics", Integrated Ferroelectrics, vol. 22, no. 1/4, pp.  278-289, 1998 .
  19. G. S. Khizha, I. B. Vendik and E. A. Serebryakova, Russian Microwave Phase Shifters Based on p-i-n Diodes, Moscow: Russia: Radio i Svyas, 1984.