2000 IEEE. Personal use of this material is permitted. However, permission to reprint/republish this material for advertising or promotional purposes or for creating new collective works for resale or redistribution to servers or lists, or to reuse any copyrighted component of this work in other works must be obtained from the IEEE.

IEEE Transactions on Microwave Theory and Techniques
Volume 48 Number 5, May 2000

Table of Contents for this issue

Complete paper in PDF format

An Efficient Algorithm for Analyzing Large-Scale Microstrip Structures Using Adaptive Integral Method Combined with Discrete Complex-Image Method

Feng Ling, Student Member, IEEE Chao-Fu Wang, Member, IEEE and Jian-Ming Jin Senior Member, IEEE

Page 832.

Abstract:

An efficient algorithm combining the adaptive integral method and the discrete complex-image method (DCIM) is presented in this paper for analyzing large-scale microstrip structures. The arbitrarily shaped microstrips are discretized using triangular elements with Rao-Wilton-Glisson basis functions. These basis functions are then projected onto a rectangular grid, which enables the calculation of the resultant matrix-vector product using the fast Fourier transform. The method retains the advantages of the well-known conjugate-gradient fast-Fourier-transform method, as well as the excellent modeling capability offered by triangular elements. The resulting algorithm has the memory requirement proportional to $O(N)$ and the operation count for the matrix-vector multiplication proportional to $O(N\log N)$, where N denotes the number of unknowns. The required spatial Green's functions are computed efficiently using the DCIM, which further speeds up the algorithm. Numerical results for some microstrip circuits and a microstrip antenna array are presented to demonstrate the efficiency and accuracy of this method.

References

  1. D. M. Pozar and S. M. Voda, "A rigorous analysis of a microstrip feed patch antenna", IEEE Trans. Antennas Propagat., vol. AP-35, pp.  1343-1350, Dec.  1987.
  2. S. Wu, H. Yang, N. G. Alexopoulous and I. Wolff, "A rigorous dispersive characterization of microstrip cross and T junctions", IEEE Trans. Microwave Theory Tech., vol. 38, pp.  1837-1844, Dec.  1990.
  3. R. Kipp and C. H. Chan, "Triangular-domain basis functions for full-wave analysis of microstrip discontinuities", IEEE Trans. Microwave Theory Tech., vol. 41, pp.  1187-1194, June  1993.
  4. F. Ling and J. M. Jin, "Scattering and radiation analysis of microstrip antennas using discrete complex image method and reciprocity theorem", Microwave Opt. Technol. Lett., vol. 16, pp.  212-216, Nov.  1997 .
  5. D. C. Chang and J. X. Zheng, "Electromagnetic modeling of passive circuit elements in MMIC's", IEEE Trans. Microwave Theory Tech., vol. 40, pp.  1741-1747, Sept.  1992.
  6. K. A. Michalski and C. G. Hsu, "RCS computation of coax-loaded microstrip patch antennas of arbitrary shape", Electromag., vol. 14, pp.  33-62,  Jan.-Mar.  1994.
  7. D. G. Fang, J. J. Yang and G. Y. Delisle, "Discrete image theory for horizontal electric dipole in a multilayer medium", Proc. Inst. Elect. Eng., vol. 135, pp.  297-303, Oct.  1988.
  8. Y. L. Chow, J. J. Yang, D. G. Fang and G. E. Howard, "A closed-form spatial Green's function for the thick microstrip substrate", IEEE Trans. Microwave Theory Tech., vol. 39, pp.  588-592, Mar.  1991.
  9. S. M. Rao, D. R. Wilton and A. W. Glisson, "Electromagnetic scattering by surface of arbitrary shape", IEEE Trans. Antennas Propagat., vol. AP-30, pp.  409-418,  May  1982.
  10. M. F. Catedra and E. Gago, "Spectral-domain analysis of conducting patches of arbitrary geometry in multilayer media using the CG-FFT method", IEEE Trans. Antennas Propagat., vol. 38, pp.  1530-1536, Oct.  1990 .
  11. A. P. M. Zwamborn and P. M. van den Berg, "A weak form of the conjugate gradient FFT method for plate problems", IEEE Trans. Antennas Propagat., vol. 39, pp.  224-228, Feb.  1991.
  12. J. M. Jin and J. L. Volakis, "A biconjugate gradient solution for scattering by planar plates", Electromag., vol. 12, pp.  105 -119, 1992.
  13. Y. Zhuang, K. Wu, C. Wu and J. Litva, "A combined full-wave CG-FFT method for rigorous analysis of large microstrip antenna array", IEEE Trans. Antennas Propagat., vol. 44, pp.  102-109, Jan.  1996.
  14. V. Rokhlin, "Rapid solution of integral equations of scattering theory in two dimensions", J. Comput. Phys., vol. 86, pp.  414-439, Feb.  1990.
  15. V. Jandhyala, E. Michielssen and R. Mittra, "Multipole-accelerated capacitance computation for 3-D structures in a stratified dielectric medium using in a closed form Green's function", Int. J. Microwave Millimeter-Wave Computer-Aided Eng., vol. 5, pp.  68-78, May  1995.
  16. L. Gurel and M. I. Aksun, "Electromagnetic scattering solution of conducting strips in layered media using the fast multipole method", IEEE Microwave Guided Wave Lett., vol. 6, pp.  277-279, Aug.  1996.
  17. P. A. Macdonald and T. Itoh, "Fast simulation of microstrip structures using the fast multipole method", Int. J. Numer. Modeling, vol. 9, pp.  345-357, 1996.
  18. J. S. Zhao, W. C. Chew, C. C. Lu, E. Michielssen and J. M. Song, "Thin-stratified medium fast-multipole algorithm for solving microstrip structures", IEEE Trans. Microwave Theory Tech., vol. 46, pp.  395-403, Apr.  1998.
  19. C. H. Chan, C. M. Lin, L. Tsang and Y. F. Leung, "A sparse-matrix/canonical grid method for analyzing microstrip structures", IEICE Trans. Electron., vol. E80-C, pp.  1354-1359, Nov.  1997.
  20. J. R. Phillips and J. K. White, "Precorrected-FFT methods for electromagnetic analysis of complex 3-D interconnect and packages", in Proc. Progress in Electromag. Res. Symp. Dig., July 1995, p.  461. 
  21. E. Bleszynski, M. Bleszynski and T. Jaroszewicz, "A fast integral-equation solver for electromagnetic scattering problem", IEEE AP-S Int. Symp. Dig., pp.  416-419, 1994 .
  22. E. Bleszynski, M. Bleszynski and T. Jaroszewicz, "AIM: Adaptive integral method for solving large-scale electromagnetic scattering and radiation problems", Radio Sci., vol. 31, pp.  1225-1251, Sept.-Oct.  1996.
  23. F. Ling, C. F. Wang and J. M. Jin, "Application of adaptive integral method to scattering and radiation analysis of arbitrarily shaped planar structures", J. Electromag. Waves Applicat., vol. 12, pp.  1021-1038, Aug.  1998.
  24. D. M. Sheen, S. M. Ali, M. D. Abouzahra and J. A. Kong, "Application of the three-dimensional finite-difference time-domain method to the analysis of planar microstrip circuits", IEEE Trans. Microwave Theory Tech., vol. 38, pp.  849-857, July  1990.
  25. F. Giannini, R. Sorrentino and J. Vrba, "Planar circuit analysis of microstrip radial stub", IEEE Trans. Microwave Theory Tech., vol. MTT-32, pp.  1652-1655, Dec.  1984.
  26. T. Edwards, Foundations for Microstrip Circuit Design, New York: Wiley, 1991.