2000 IEEE. Personal use of this material is permitted. However, permission to reprint/republish this material for advertising or promotional purposes or for creating new collective works for resale or redistribution to servers or lists, or to reuse any copyrighted component of this work in other works must be obtained from the IEEE.

IEEE Transactions on Microwave Theory and Techniques
Volume 48 Number 5, May 2000

Table of Contents for this issue

Complete paper in PDF format

Modeling of Broad-Band Traveling-Wave Optical-Intensity Modulators

R. Krähenbühl and W. K. Burns

Page 860.

Abstract:

In this paper, an accurate simulation tool for the electrical and optical response of broad-band traveling-wave optical intensity modulators is presented, which takes into account multisectional electrical transmission lines. This model is applied to analyze a high-speed fully packaged LiNbO3 Mach-Zehnder interferometer.

References

  1. R. C. Alferness, S. K. Korotky and E. A. Marcatili, "Velocity-matching techniques for integrated optic traveling wave switch/modulators", IEEE J. Quantum Electron. , vol. QE-20, pp.  301-309, Mar.  1984.
  2. W. K. Burns, "Analytic output expression for integrated optic phase reversal modulators with microwave loss", Appl. Opt., vol. 28, no.  15, pp.  3280-3283, 1989.
  3. G. K. Gopalakrishnan, W. K. Burns, R. W. McElhanon, C. H. Bulmer and A. S. Greenblatt, "Performance and modeling of broad-band LiNbO3 traveling wave optical intensity modulators", J. Lightwave Technol., vol. 12, pp.  1807-1819, Oct.  1994 .
  4. G. K. Gopalakrishnan, C. H. Bulmer, W. K. Burns, R. W. McElhanon and A. S. Greenblatt, "40 GHz, low half-wave voltage Ti: LiNbO3 intensity modulator", Electron. Lett., vol. 28, no. 9, pp.  826-827, 1992.
  5. W. K. Burns, M. M. Howerton, R. P. Moeller, R. Krähenbühl, R. W. McElhanon and A. S. Greenblatt, "Low drive voltage, broad-band LiNbO3 modulators with and without etched ridges", J. Lightwave Technol., vol. 17, pp.  2551-2555, Dec.  1999.