2000 IEEE. Personal use of this material is permitted. However, permission to reprint/republish this material for advertising or promotional purposes or for creating new collective works for resale or redistribution to servers or lists, or to reuse any copyrighted component of this work in other works must be obtained from the IEEE.

IEEE Transactions on Microwave Theory and Techniques
Volume 48 Number 6, June 2000

Table of Contents for this issue

Complete paper in PDF format

Design Optimization and Characterization of High-Gain GaInP/GaAs HBT Distributed Amplifiers for High-Bit-Rate Telecommunication

Saeed Mohammadi, Student Member, IEEE Jae-Woo Park, Member, IEEE Dimitris Pavlidis, Fellow, IEEE Jean-Louis Guyaux and Jean Charles Garcia

Page 1038.

Abstract:

The design methodology, processing technology, and characterization of high-gain GaInP/GaAs heterojunctoin-bipolar-transistor-based distributed amplifiers are described in this paper. Distributed amplifiers with different active cells and number of stages have been compared for high-gain (>12 dB) and high-bandwidth (>25 GHz) performance. Based on the results, a three-stage attenuation-compensated distributed amplifier with a flat gain (S21) of 12.7 dB over a bandwidth of 27.5 GHz was successfully fabricated and tested. Eye-diagram tests at 10 Gb/s show very open eye characteristics with no signal skewing. The amplifier achieves a minimum noise figure of 4 dB at 3 GHz and a sensitivity of -25 dBm for 10-Gb/s nonreturn-to-zero 215-1 pseudorandom bit sequence with a bit error rate of 10-9.

References

  1. K.W. Kobayashi, J. Cowles, L. T. Tran, A. Gutierres-Aitken, T. R. Block, A. K. Oki and D. C. Streit, "A 50-MHz-55-GHz multidecade InP-based HBT distributed amplifier", IEEE Microwave Guided Wave Lett., vol. 7, pp.  353-355, Oct.  1997.
  2. K. W. Kobayashi, L. T. Tran, J. C. Cowles, T. R. Block, A. K. Oki and D. C. Streit, "Extending the bandwidth performance of heterojunction bipolar transistor-based distributed amplifiers", IEEE Trans. Microwave Theory Tech., vol. 44, pp.  739 -748, May  1996.
  3. S. Kimura, Y. Imai, Y. Umeda and T. Enoki, "0-90 GHz InAlAs/InGaAs/InP HEMT distributed baseband amplifier IC", Electron. Lett., vol. 31, no. 17, pp.  1430-1431, Aug.  1995.
  4. T. S. Tan, D. M. Braun, T. L. Bagwell, C. P. Kocot, J. Straznicky and S. R. Sloan, "Flip-chip photodetector for high-speed communications instrumentation", Hewlett-Packard J., vol. 48, pp.  102-110,  Dec.  1997.
  5. J. C. Garcia, C. Dua, S. Mohammadi and D. Pavlidis, "Hydride free chemical beam epitaxy processes and application to GaInP/GaAs HBTs", in 38th Elect. Mater. Conf. Dig., Santa Barbara, CA, 1996, p.  EE9. 
  6. J. W. Park, S. Mohammadi, D. Pavlidis, C. Dua, J. L. Guyaux and J. C. Garcia, "GaInP/GaAs HBT broad-band monolithic transimpedance amplifiers and their high-frequency small and large signal characteristics", in IEEE MTT-S Int. Microwave Symp. Dig., vol. 1, Baltimore, MD, June 7-9 1998, pp.  39-42. 
  7. S. Mohammadi, J. W. Park, D. Pavlidis, J. L. Guyaux and J. C. Garcia, "Optimal design and experimental characterization of high-gain GaInP/GaAs HBT distributed amplifiers", in IEEE MTT-S Int. Microwave Symp. Dig., Anaheim, CA, June 12-19 1999, pp.  685-688. 
  8. K. W. Kobayashi, R. Esfandiari and A. K. Oki, "A novel HBT distributed amplifier design topology based on attenuation compensation techniques", IEEE Trans. Microwave Theory Tech., vol. 42, pp.  2583-2589, Dec.  1994.
  9. P. K. Iklainen, "Low-noise distributed amplifier with active load", IEEE Microwave Guided Wave Lett., vol. 6, pp.  7-9, Jan.   1996.
  10. D. Pehlke and D. Pavlidis, "Evaluation of the factors determining HBT high-frequency performance by direct analysis of S -parameter data", IEEE Trans. Microwave Theory Tech., vol. 40, pp.  2367-2373, Dec.  1992.
  11. S. Deibele and J. B. Beyer, "Attenuation compensation in distributed amplifier design", IEEE Trans. Microwave Theory Tech., vol. 37, pp.  1425-1433, Sept.  1989.
  12. B. Agarwal, R. Pullela, Q. Lee, D. Mensa, J. Guthrie and M. J. W. Rodwell, "80 GHz distributed amplifiers with transferred-substrate heterojunction bipolar transistors", in IEEE MTT-S Int. Microwave Symp. Dig., Baltimore, MD, 1998, pp.  2302-2307. 
  13. S. Kimura and Y. Imai, "0-40 GHz GaAs MESFET distributed baseband amplifier IC's for high-speed optical transmission", IEEE Trans. Microwave Theory Tech., vol. 44, pp.  2076-2082, Nov.  1996.
  14. A. B. Carlson, Communication Systems: An Introduction to Signals and Noise in Electrical Communications, 3rd ed.   New York: McGraw-Hill, 1986, pp.  391-396. 
  15. L. M. Lunardi, S. Chandrasekhar, A. H. Gnauck, C. A. Burrus and R. A. Hamm, "20-Gb/s Monolithic p-i-n/HBT photoreceiver module for 1.55-µ m applications", IEEE Photon. Technol. Lett., vol. 7, pp.  1201-1203, Oct.  1995 .