2000 IEEE. Personal use of this material is permitted. However, permission to reprint/republish this material for advertising or promotional purposes or for creating new collective works for resale or redistribution to servers or lists, or to reuse any copyrighted component of this work in other works must be obtained from the IEEE.

IEEE Transactions on Microwave Theory and Techniques
Volume 48 Number 6, June 2000

Table of Contents for this issue

Complete paper in PDF format

Port Reduction Methods for Scattering Matrix Measurement of an N-Port Network

Hsin-Chia Lu, Member, IEEE and Tah-Hsiung Chu Member, IEEE

Page 959.

Abstract:

The port reduction method (PRM) is a method to acquire the scattering matrix of an N-port network from the scattering matrix measured at a reduced port order by terminating certain ports. This then relaxes the instrumentation requirement and calibration procedure. As the port order is reduced to two, the scattering matrix of an N-port network can be obtained from the measurement using a conventional two-port vector network analyzer. In this paper, we describe two novel PRM's, which can reduce the order of measured ports to two. The experiment results show good accuracy. These two PRM's can provide a simpler calibration procedure and instrumentation than those directly using an N-port network analyzer. In addition, they give more accurate results than those measured by a two-port network analyzer with the assumption of using ideal terminators.

References

  1. R. A. Speciale, "Multiport network analyzers meeting the design need", Microwave Syst. News, vol. 10, no. 6, pp.  67-89, June  1980.
  2. R. A. Speciale, "A generalization of the TSD network analyzer calibration procedures, covering n -port scattering parameter measurements, affected by leakage errors", IEEE Trans. Microwave Theory Tech., vol. MTT-25, pp.  1100-1115, Dec.   1977.
  3. P. C. Sharma and K. C. Gupta, "A generalized method for de-embedding of multi-port networks", IEEE Trans. Instrum. Meas., vol. IM-30, pp.  305 -307, Dec.  1981.
  4. A. Ferrero, U. Pisani and K. J. Kerwin, "A new implementation of a multiport automatic network analyzer", IEEE Trans. Microwave Theory Tech., vol. 40, pp.  2078-2085, Nov.  1992.
  5. A. Ferrero, F. Sanpiertro and U. Pisani, "Multiport vector network analyzer calibration: A general formulation", IEEE Trans. Microwave Theory Tech., vol. 42, pp.  2455-2461, Dec.  1994.
  6. A. Ferrero and F. Sanpiertro, "A simplified algorithm for leaky network analyzer calibration", IEEE. Microwave Guided Wave Lett., vol. 5, pp.  119-121,  Apr.  1995.
  7. S. H. Li and R. G. Bosisio, "The automatic measurement of $n -port microwave junctions by means of six-port technique", IEEE Trans. Instrum. Meas., vol. IM-31, pp.  40-43, Mar.  1982 .
  8. F. M. Ghannouchi, "A calibration and measurement method of a tri-six-port network analyzer suitable for on-wafer characterization of three-port devices", IEEE Trans. Instrum. Meas., vol. 42, pp.  864-866,  Aug.  1993.
  9. J. C. Tippet and R. A. Speciale, "A rigorous technique for measuring the scattering matrix of a multiport device with a two-port network analyzer", IEEE Trans. Microwave Theory Tech., vol. MTT-30, pp.  661-666, May  1982 .
  10. D. Woods, "Multi-port-network analysis by matrix renormalization employing voltage-wave S -parameters with complex normalization", Proc. IEEE, vol. 124, pp.  198-204, Mar.  1977 .
  11. J. C. Rautio, "Techniques for correcting scattering parameter data of an imperfectly terminated multi-port when measured with a two-port network analyzer", IEEE Trans. Microwave Theory Tech., vol. MTT-31, pp.  407-412, May  1983.
  12. D. F. Williams and D. K. Walker, "In-line multiport calibration algorithm", in 51st ARFTG Conf. Dig., June 12 1998, pp.  88-90. 
  13. W. Lin and C. Ruan, "Measurement and calibration of a universal six-port network analyzer", IEEE Trans. Microwave Theory Tech., vol. 37, pp.  734-742, Apr.  1989.
  14. M. Davidovitz, "Reconstruction of the S$ -matrix for a 3-port using measurements at only two ports", IEEE Microwave Guided Wave Lett., vol. 5, pp.  349-350, Oct.  1995.