2000 IEEE. Personal use of this material is permitted. However, permission to reprint/republish this material for advertising or promotional purposes or for creating new collective works for resale or redistribution to servers or lists, or to reuse any copyrighted component of this work in other works must be obtained from the IEEE.

IEEE Transactions on Microwave Theory and Techniques
Volume 48 Number 6, June 2000

Table of Contents for this issue

Complete paper in PDF format

Hybrid Finite-Difference/Finite-Volume Time-Domain Analysis for Microwave Integrated Circuits with Curved PEC Surfaces Using a Nonuniform Rectangular Grid

Mingwu Yang, Yinchao Chen, Member, IEEE and Raj Mittra Life Fellow, IEEE

Page 969.

Abstract:

In this paper, we present a hybrid algorithm that combines the finite-difference time-domain (FDTD) and finite-volume time-domain (FVTD) methods to analyze microwave integrated-circuit structures that may contain curved perfect electric conductor (PEC) surfaces. We employ the conventional nonuniform FDTD in regions where the objects are describable with a rectangular mesh, while applying the FVTD method elsewhere where we need to deal with curved PEC configurations. Both the FDTD and FVTD quantities are defined in the mutually overlapping regions, and these fields from the respective regions are interpolated by using their nearest neighbors. We validate this algorithm by analyzing the scattering parameters of a stripline with one or more adjacent cylindrical vias, whose geometries are frequently encountered in printed-circuit-board designs. It is found that the hybrid FDTD-FVTD approach requires little increase in central processing unit time and memory in comparison to the conventional FDTD, while its computational accuracy is significantly improved over a wide range of frequencies. Specifically, this accuracy is found to be comparable to that achieved by doubling the mesh density of the staircased FDTD.

References

  1. K. S. Yee, "Numerical solution of initial boundary value problems involving Maxwell's equations in isotropic media", IEEE Trans. Antennas Propagat., vol. AP-14, pp.  302-307, May  1966.
  2. A. Taflove, Computational Electrodynamics: The Finite Difference Time Domain Method, Norwood, MA: Artech House, 1995.
  3. K. S. Kunz and R. J. Luebbers, The Finite-Difference Time-Domain Method for Electromagnetics, Boca Raton, FL: CRC Press, 1993.
  4. T. G. Jurgens, A. Taflove, K. Umashankar and T. G. Moore, "Finite-difference time-domain modeling of curved surfaces", IEEE Trans. Antennas Propagat., vol. 40, pp.  357-366,  Apr.  1992.
  5. V. Shankar, A. H. Mohammadian and W. F. Hall, "A time-domain, finite-volume treatment for the Maxwell equations", Electromag., vol. 10, pp.  127 -145, 1990.
  6. K. S. Yee and J. S. Chen, "The finite-difference time-domain (FDTD) and the finite-volume time-domain (FVTD) methods in solving Maxwell's equations", IEEE Trans. Antennas Propagat., vol. 45, pp.  354-363, Mar.  1997.
  7. K. S. Yee and J. S. Chen, "Conformal hybrid finite difference time domain and finite volume time domain", IEEE Trans. Antennas Propagat., vol. 42, pp.  1450-1455, Oct.  1994.
  8. K. S. Yee and J. S. Chen, "Impedance boundary condition simulation in the FDTD/FVTD hybrid", IEEE Trans. Antennas Propagat., vol. 45, pp.  921-925,  June  1997.
  9. D. Koh, H. Lee and T. Itoh, "A hybrid full-wave analysis of via-hole grounds using finite-difference and finite-element time-domain methods", IEEE Trans. Microwave Theory Tech., vol. 45, pp.  2217-2222, Dec.  1997 .
  10. J. A. Svigelj, "Efficient solution of Maxwell's equations using the nonuniform orthogonal finite difference time domain method", Ph.D. dissertation, Dept. Elect. Comput. Eng., Univ. Illinois at Urbana-Champaign, Urbana-Champaign, IL, 1995.
  11. S. D. Gedney and F. Lansing, "Explicit time-domain solution of Maxwell's equation using nonorthogonal and unstructured grids,"in Computational Electrodynamics:The Finite Difference Time Domain Method, A. Taflove, Ed. Norwood, MA: Artech House, 1995, ch. 11.
  12. K. S. Yee, J. S. Chen and A. H. Chang, "Conformal finite-difference time-domain (FDTD) with overlapping grids", IEEE Trans. Antennas Propagat., vol. 40, pp.  1068-1075,  Sept.  1992.
  13. Z. Bi, K. Wu, C. Wu and J. Litva, "A dispersive boundary condition for microstrip component analysis using the FDTD", IEEE Trans. Microwave Theory Tech., vol. 40, pp.  774-777, Apr.  1992.
  14. W. L. Ko and R. Mittra, "A combination of FD-TD and Prony's methods for analyzing microwave integrated circuits", IEEE Trans. Microwave Theory Tech., vol. 39, pp.  2176-2181, Dec.  1991.
  15. T. K. Sarkar and O. Pereira, "Using the matrix pencil method to estimate the parameters of a sum of complex exponentials", IEEE Antennas Propagat. Mag., vol. 37, pp.  48-55, Feb.  1995.