2000 IEEE. Personal use of this material is permitted. However, permission to reprint/republish this material for advertising or promotional purposes or for creating new collective works for resale or redistribution to servers or lists, or to reuse any copyrighted component of this work in other works must be obtained from the IEEE.

IEEE Transactions on Microwave Theory and Techniques
Volume 48 Number 7, July 2000

Table of Contents for this issue

Complete paper in PDF format

TFDTLM-A New Computationally Efficient Frequency-Domain Transmission-Line-Matrix Method

Iman Salama and Sedki M. Riad Fellow, IEEE

Page 1089.

Abstract:

In this paper, a new computationally efficient frequency-domain transmission-line matrix (FDTLM) approach is introduced. The new approach combines the superior features of both the time-and the frequency-domain transmission-line matrix (TLM). It is based on a steady-state analysis in the frequency domain using transient analysis techniques and, hence, is referred to as the transient frequency-domain transmission-line matrix (TFDTLM). On the contrary, of all other frequency-domain techniques, the TFDTLM has the advantage of being able to extract all the frequency-domain information in the frequency range of interest from only one simulation. This special feature of the TFDTLM makes it computationally more efficient as compared to any other FDTLM method. The TFDTLM employs digital filter approximations for modeling wave propagation in inhomogeneous frequency dispersive media. The filters can be thought of as some type of compensation equivalent to the stubs in a time-domain transmission-line matrix (TD TLM), yet more accurate and more capable of modeling a wide variety of frequency-dependent material parameters. In addition, the TFDTLM has proven to have superior dispersion behavior in modeling lossy inhomogeneous media as compared to the TD TLM.

References

  1. I. Salama and S. Riad, "A new computationally efficient frequency domain TLM", in 2nd Int. TLM Theory Applicat. Workshop, Munich, Germany,Oct. 1997.
  2. H. Jins and R. Vahldieck, "The frequency domain transmission line matrix-A new concept", IEEE Trans. Microwave Theory Tech, vol. 40, pp.  2207-2218,  Dec.  1992.
  3. D. P. Johns, A. J. Wlodarcyzk, A. Mallik and C. Christopoulos, "New TLM Technique for steady state field solutions in three dimensions", Electron. Lett., vol. 28, no.  18, pp.  1692-1694, 1992.
  4. D. P. Johns and C. Christopoulos, "A new frequency domain TLM method for the numerical solution of steady state electromagnetic problems", Proc. Inst. Elect. Eng., vol. 141, no. 4, pp.  310-316, July   1994.
  5. V. Trenkic, C. Christopoulos and T. M. Benson, "Simple and elegant formulation of scattering in TLM nodes", Electron. Lett., pp.  1651-1652, Sept.   1993.
  6. P. Berini and K. Wu, "A pair of hybrid symmetrical condensed node", IEEE Microwave Guided Wave Lett., vol. 4, pp.  244-246, July  1994.
  7. V. Trenkic, C. Christopoulos and T. M. Benson, "New symmetrical super condensed node for TLM method", Electron. Lett., vol. 30, no. 4, pp.  329-330, Feb.  1994.
  8. V. Trenkic, C. Christopoulos and T. M. Benson, "Generally graded mesh using the symmetrical super condensed node", Electron. Lett., vol. 30, no. 10, pp.  795-797, May  1994.
  9. A. Oppenheim and R. W. Schafer, Discrete-Time Signal Processing, Englewood Cliffs, NJ: Prentice-Hall, 1989.
  10. J. S. Nielsen and W. J. R. Hoefer, "Generalized dispersion analysis and spurious modes of 2-D and 3-D TLM formulations", IEEE Trans. Microwave Theory Tech., vol. 11, pp.  2207-2218, Aug.  1993.
  11. J. S Nielson and W. J. Hoefer, "A complete dispersion analysis of the condensed node TLM mesh", IEEE Trans. Magn., vol. 27, pp.  3982-3985,  Sept.  1991.
  12. J. A. Morente, G. Gimenez, J. A. Porti and M. Khalladi, "Dispersion analysis for a TLM mesh of symmetrical condensed nodes with stubs", IEEE Trans. Microwave Theory Tech., vol. 43, pp.  452-456, Feb.  1995.
  13. M. Celuch-Marcysiak and W. K. Gwarek, "On the effect of bilateral dispersion in inhomogeneous symmetrical condensed node modeling", IEEE Trans. Microwave Theory Tech., vol. 42, pp.  1069-1073, June  1994.
  14. V. Trenkic, C. Christopoulos and T. M. Benson, "Development of a general symmetrical condensed node for the TLM method", IEEE Trans. Microwave Theory Tech., vol. 44, pp.  2129-2135, Dec.  1996.
  15. V. Trenkic, C. Christopoulos and T. M. Benson, "Efficient computation algorithms for TLM", in 1st Int. TLM Theory Applicat. Workshop, Victoria, B.C., Canada,Aug. 1995, pp.  77- 80.