2000 IEEE. Personal use of this material is permitted. However, permission to reprint/republish this material for advertising or promotional purposes or for creating new collective works for resale or redistribution to servers or lists, or to reuse any copyrighted component of this work in other works must be obtained from the IEEE.

IEEE Transactions on Microwave Theory and Techniques
Volume 48 Number 7, July 2000

Table of Contents for this issue

Complete paper in PDF format

A New Theory of the Characteristic Impedance of General Printed Transmission Lines Applicable When Power Leakage Exists

Nirod K. Das Member, IEEE

Page 1108.

Abstract:

Conventional definitions of the characteristic impedance, such as the voltage-current, power-current, and power-voltage methods, which have been commonly used for standard nonleaky transmission lines, become invalid when power leakage occurs. In this paper, we present a new theory of the characteristic impedance for printed transmission lines,applicable under the general conditions with or without power leakage. The theory is founded on dual field and circuit theories of transmission lines,formulated in the spectral domain, and uses a new approach called"the wavenumber perturbation approach."In order to correctly compute the complex characteristic impedance under leakage conditions, the new theory requires to carefully"extract out"the surface-wave or parallel plate-wave poles on the complex k-plane. In obvious difference to this, it is well known that the poles must be"included"for a correct solution of the complex propagation constant of the leaky line. Incidentally, unlike the conventional methods, the new theory derives the complex characteristic impedance together with the solution of the phase and attenuation constants, in a single unified procedure. This avoids additional efforts in computational or analytical/formulational complexity. Results for selected cases of interest are presented, which demonstrate the validity and simplicity/elegance of the new theory.

References

  1. N. K. Das and D. M. Pozar, "Full-wave spectral-domain computation of material, radiation and guided wave losses in infinite multilayered printed transmission lines", IEEE Trans. Microwave Theory Tech., vol. 39, pp.  54-63, Jan.  1991.
  2. H. Shigesawa, M. Tsuji and A. A. Oliner, "Conductor backed slotline and coplanar waveguide: Dangers and full-wave analyses", in IEEE MTT-S Int. Microwave Symp. Dig. , 1988, pp.  199-202. 
  3. L. Carin and N. K. Das, "Leaky waves in broadside-coupled microstrips", IEEE Trans. Microwave Theory Tech., vol. 40, pp.  58-66, Jan.  1992.
  4. D. Nghiem, J. T. Williams and D. R. Jackson, "Leakage of the dominant mode on stripline with a small air gap", IEEE Trans. Microwave Theory Tech., vol. 43, pp.  2549-2556, Nov.  1995.
  5. N. K. Das and D. M. Pozar, "A generalized spectral-domain Green's function for multilayer dielectric substrates with applications to multilayer transmission lines", IEEE Trans. Microwave Theory Tech., vol. MTT-35, pp.  326-335, Mar.  1987.
  6. R. W. Jackson, "Considerations in the use of coplanar waveguide for millimeter-wave integrated circuits", IEEE Trans. Microwave Theory Tech., vol. MTT-34, pp.  1021-1027, Dec.  1986.
  7. E. J. Denlinger, "A frequency dependent solution for microstrip transmission lines", IEEE Trans. Microwave Theory Tech., vol. MTT-19, pp.  30-39, Jan.  1971.
  8. D. Mirshekar-Syahkal and J. B. Davies, "Accurate solution of microstrip and coplanar structures for dispersion and for dielectric and conductor losses", IEEE Trans. Microwave Theory Tech., vol. MTT-27, pp.  694-699, July  1979.
  9. F. Arndt and G. U. Paul, "The reflection definition of the characteristic impedance of microstrips", IEEE Trans. Microwave Theory Tech., vol. MTT-27, pp.  724-731, Aug.  1979.
  10. J. C. Rautio, "A new definition of characteristic impedance", in IEEE MTT-S Int. Microwave Symp. Dig., vol. 2, June 1991, pp.  761-764. 
  11. N. K. Das, "Power leakage, characteristic impedance and mode-coupling behavior of finite-length leaky printed transmission lines", IEEE Trans. Microwave Theory Tech., vol. 44, pp.  526-536, Apr.  1996 .
  12. N. K. Das, "Spectral-domain analysis of complex characteristic impedance of a leaky conductor-backed slotline", in IEEE MTT-S Int. Microwave Symp. Dig., 1996, pp.  1791-1794. 
  13. T. Itoh, "Spectral domain immitance approach for dispersion characteristics of generalized printed transmission lines", IEEE Trans. Microwave Theory Tech., vol. MTT-28, pp.  733-736, July   1980.
  14. R. F. Harrington, Time Harmonic Electromagnetic Fields, New York: McGraw-Hill, 1984.
  15. D. M. Pozar, Microwave Engineering, Reading, MA: Addison-Wesley, 1990.
  16. N. K. Das, "A study of multilayered printed antenna structures", Ph.D. dissertation, Dept. Elect. Comput. Eng., Univ. Massachusetts at Amherst, Amherst, MA, 1987.
  17. N. K. Das and D. M. Pozar, "A generalized CAD model for printed antennas and arrays with arbitrary multilayer geometries,"in Computer Physics Communication,Thematic Issue on Computational Electromagnetics, L. Safai, Ed. Amsterdam, The Netherlands: Elsevier, 1991,vol. 68, pp.  393-440. 
  18. K. C. Gupta, R. Garg and I. J. Bahl, Microstrip Lines and Slotlines, Norwood, MA: Artech House, 1979.
  19. T. Itoh, Planar Transmission Line Structures, Edited Volume, New York: IEEE Press, 1987.
  20. N. K. Das and D. M. Pozar, PCAAMT-Personal Computer Aided Analysis of Multilayer Transmission Lines-Version 1.0, Leverette, MA: Antenna Design Associates, 1990.
  21. J. T. Williams, N. Nghiem and D. R. Jackson, "Proper and improper modal solutions for inhomogeneous stripline", in IEEE MTT-S Int. Microwave Symp. Dig., 1991, pp.  567-570.