2000 IEEE.
Personal use of this material is
permitted. However, permission to reprint/republish this
material for advertising or promotional purposes or for
creating new collective works for resale or redistribution
to servers or lists, or to reuse any copyrighted component
of this work in other works must be obtained from the
IEEE.
IEEE Transactions on Microwave Theory and Techniques
Volume 48 Number 7, July 2000
Table of Contents for this issue
Complete paper in PDF format
Three-Dimensional Optical
Pulse Simulation Using the FDTD Method
Dennis Sullivan, Senior Member, IEEE Jun Liu and Mark Kuzyk
Page 1127.
Abstract:
As the use of optical waveguides expands, it would be desirable
to have an explicit three-dimensional simulation method to analyze characteristics
and develop new devices. One such method is the finite-difference time-domain
(FDTD) method. The FDTD method requires a relatively high sampling density
per wavelength, making simulation over distances of several wavelengths difficult.
Several techniques are described to make such a simulation possible with limited
computer resources. Among them is a moving problem space, which holds the
pulse in the middle and moves the background medium past the pulse. Simultaneously,Fourier and wavelet analyses are used to characterize the pulse.
References
-
A. Taflove,
Computational Electrodynamics: The Finite-Difference Time-Domain, Norwood, MA: Artech House, 1995.
-
M. Jinno and T. Matsumoto, "Ultrafast all-optical logic operations in a nonlinear Sagnac interferometer with two control beams", Opt. Lett.
, vol. 16, pp. 220-222, Feb. 1991.
-
M. B. Kuzyk, U. C. Paek and C. W. Dirk, "Guest host polymers for nonlinear optics",
Opt. Lett., vol. 16, pp. 902-904, Aug. 1991.
-
P. M. Goorjian and A. Taflove, "Direct time integration of Maxwell's equations in nonlinear dispersive media for propagation and scattering of femtosecond electromagnetic solitons", Opt. Lett., vol. 17, pp. 180-182, Feb. 1992
.
-
R. M. Joseph, P. M. Goorjian and A. Taflove, "Direct time integration of Maxwell's equations in two-dimensional dielectric waveguides for propagation and scattering of femtosecond electromagnetic solitons", Opt. Lett., vol. 18, pp. 491-493,
April 1992.
-
K. S. Yee, "Numerical solution of initial boundary value problems involving Maxwell's equations in isotropic media", IEEE Trans.
Antennas Propagat., vol. AP-14, pp. 585-589, Apr. 1966.
-
D. M. Sullivan, "Nonlinear FDTD formulations using Z transforms", IEEE Trans. Microwave Theory Tech., vol. 43, pp. 676-682, Mar. 1995.
-
D. M. Sullivan, "Z transform theory and the FDTD method", IEEE Trans. Antennas Propagat., vol. 44, pp. 28-34,
Jan. 1996.
-
D. M. Sullivan and M. Kuzyk, "Three dimensional nonlinear optical fiber simulation", in 4th Int. Millimeter Submillimeter Waves Applicat. Conf., San Diego, CA, July 20-24 1998, pp. 1325-1329.
-
D. W. Garvery, K. Zimmerman, P. Young, J. S. Townsend, Z. Zhou, M. Lobel, M. Dayton, W. Wittorf and M. G. Kuzyk, "Single-mode nonlinear-optical polymer fibers", J. Opt. Soc. Amer. B., Opt. Phys., vol. 13, pp.
2017-2023, Sept. 1996.
-
K. L. Shlager, J. G. Maloney, S. L. Ray and A. F. Peterson, "Relative accuracy of several finite-difference time-domain methods in two and three dimensions", IEEE Trans. Antennas
Propagat., vol. 41, pp. 1732-1737, Dec. 1993.
-
J. Senior,
Optical Fiber Communications,
Englewood Cliffs, NJ: Prentice-Hall, 1985.
-
D. W. Garvery, Q. Li, M. G. Kuzyk, C. W. Dirk and S. Martinez, "Sagnac interferometric intensity-dependent refractive-index measurements of polymer optical fiber", Opt. Lett., vol. 21, pp. 104-106, Jan. 1996.
-
D. M. Sullivan, "Mathematical methods for treatment planning in deep, regional hyperthermia", IEEE Trans. Microwave Theory Tech., vol. 30, pp. 864-872, May 1991.
-
G. Strang and T. Nguyen,
Wavelets and Filter Banks, Wellesley, MA: Wellesley-Cambridge, 1996.
-
D. M. Sullivan, "An unsplit step 3-D PML for use with the FDTD method", IEEE Microwave Guided Wave Lett., vol. 7, pp.
184-186, July 1997.