2000 IEEE. Personal use of this material is permitted. However, permission to reprint/republish this material for advertising or promotional purposes or for creating new collective works for resale or redistribution to servers or lists, or to reuse any copyrighted component of this work in other works must be obtained from the IEEE.

IEEE Transactions on Microwave Theory and Techniques
Volume 48 Number 7, July 2000

Table of Contents for this issue

Complete paper in PDF format

Superconductors and Cryogenics for Future Communication Systems

Matthias Klauda, Tobias Kässer, Bernd Mayer, Christian Neumann, Frank Schnell, Bachitor Aminov, Arno Baumfalk, Heinz Chaloupka, Member, IEEE Serguei Kolesov, Helmut Piel, Norbert Klein, Stefan Schornstein and Martin Bareiss

Page 1227.

Abstract:

In the framework of a German research program on"superconductors and ceramics for future communication technology,"efforts are undertaken to demonstrate the feasibility of cryogenic and high-temperature superconductor technology for applications in communication satellites and base transceiver stations (BTS's) for terrestrial mobile communication. For the receiver front end of C-band satellites, noise reduction filters as well as input-multiplexer channel filters have been developed. A three-channel output multiplexer was composed of dielectric hemisphere filters with elliptic response. Associated encapsulation and cooling issues for spaceborn systems were investigated and an in-orbit demonstration of the complete setup will be performed on the International Space Station. Activities toward applications in terrestrial mobile communication are focused on BTS cryogenic front ends with single preselect filters of superior selectivity, and on reconfigurable front ends allowing some electronically controlled change in the preselection frequency response. A first version of a demonstrator for a cryogenic BTS front end was developed.

References

  1. M. Nisenoff, J. C. Ritter, G. Price and S. A. Wolf, "The high temperature superconductivity space experiment: HTSSE I components and HTSSE II subsystems and advanced devices", IEEE Trans. Appl. Superconduct., vol. 3, pp.  2885-2890, Mar.  1993.
  2. N. Newman and W. G. Lyons, "High-temperature superconducting microwave devices: Fundamental issues in material, physics and engineering", J. Superconduct., vol. 6, pp.  119-160, 1993.
  3. H. Chaloupka, "Microwave applications of high temperature superconductors,"in Applications of Superconductivity, H. Weinstock, Ed. Norwell, MA: Kluwer,vol. 2000.
  4. T. G. Kawecki, G. A. Golba, G. E. Price, V. S. Rose and W. J. Meyers, "The high temperature superconductivity space experiment (HTSSE-II) design", IEEE Trans. Microwave Theory Tech., vol. 44, p.  1198,  July  1996.
  5. R. R. Mansouret al., "Design considerations of superconducting input multiplexers for satellite applications", IEEE Trans. Microwave Theory Tech., vol. 44, no.  7, p.  1213, 1996.
  6. T. Kässer, M. Klauda, C. Neumann, E. Guha, S. Kolesov, A. Baumfalk and H. Chaloupka, "A satellite repeater comprising superconducting filters", in IEEE MTT-S Int. Microwave Symp. Dig. , 1998, p.  375. 
  7. R. R. Mansouret al., "Design of high power superconductive output multiplexers", in IEEE MTT-S Int. Microwave Symp. Dig., 1996, p.  1485. 
  8. H. J. Chaloupka, M. Jeck, B. Gurziniski and S. Kolesov, "Superconducting planar disk resonators and filters with high power handling capability", Electron. Lett., vol. 32, pp.  1735-37, 1996.
  9. S. Kolesov, H. J. Chaloupka, A. Baumfalk and T. Kaiser, "Planar HTS structures for high power applications in communication systems", J. Superconduct., vol. 10, pp.  179-187,  1997.
  10. A. Baumfalk, H. J. Chaloupka, S. Kolesov, M. Klauda and C. Neumann, "HTS power filters for output multiplexers in satellite communications", IEEE Trans. Appl. Superconduct., vol. 9, pp.  2857-2861, June  1999.
  11. S. Schornstein, I. S. Ghosh and N. Klein, "HTSC shielded high power dielectric dual mode filter for applications in satellite communications", in IEEE MTT-S Int. Microwave Symp. Dig., 1998, p.  1319. 
  12. R. R. Mansour, S. Ye, S. Peik, B. Jolley, V. Dokas, T. Romano and G. Thomson, "HTS filter technology for space applications", in IEEE MTT-S Int. Microwave Symp. Dig., 1998, pp.  2364-2371. 
  13. C. Schrempp, M. Klauda and C. Neumann, "Design of a cryogenic platform for new communication payload technologies", presented at the 29th Int. Conf. Environmental Syst., Denver, CO, 1999.
  14. M. J. Lancester, Passive Microwave Device Applications of Superconductors, Cambridge: U.K.: Cambridge Univ. Press, 1997.
  15. "IEEE Trans. Microwave Theory Tech. (Special Issue on Microwave and Millimeter-Wave Applications of High-Temperature Superconductors)", vol. 44, July  1996.
  16. G.-C. Lianget al., "High-power HTS microstrip filters for wireless communication", IEEE Trans. Microwave Theory Tech., vol. 43, pp.  3020-3027, Dec.  1995.
  17. S. H. Talisa, M. A. Janocko, D. L. Meier, J. Talvacchio, C. Moskowitz, D. C. Buck, R. S. Nye, S. J. Pieseski and G. R. Wagner, "High temperature superconducting space-qualified multiplexers and delay lines", IEEE Trans. Microwave Theory Tech., vol. 44, pp.  1229-1230, July  1996.
  18. R. B. Hammondet al., "HTS wireless filters: Past, present and future performance", Microwave J., vol. 41, no. 10, pp.  94 -107, Oct.  1998.
  19. J. Mitola, "The software radio architecture", IEEE Commun. Mag., vol. 33, pp.  26-38, 1995.
  20. B. Utz, R. Semerad, M. Bauer, W. Prusseit, P. Berberich and H. Kinder, "Deposition of YBCO and NBCO films on areas of 9 inches in diameter", IEEE Trans. Appl. Superconduct., vol. 7, pp.  1272-1277,  June  1997.
  21. A. Baumfalk, M. Reppel, H. Chaloupka and S. Kolesov, "Investigations on the unloaded quality factor of planar resonators with respect to substrate materials and packaging", presented at the 4th European Conf. Appl. Superconduct., 1999.
  22. B. A. Aminov, A. Baumfalk, H. Chaloupka, M. Hein, S. G. Kolesov, H. Piel, T. Kaiser, H. Medelius and E. Wikborg, "High-Q tunable YBaCuO disk resonator filter for transmitter combiner in radio base stations", in IEEE MTT-S Int. Microwave Symp. Dig., 1998, pp.  363-366. 
  23. A. Baumfalk, H. Chaloupka, S. Kolesov, F.-J. Goertz and M. Klauda, "HTS filters for satellite output multiplexers", in Proc. PIERS, 1998, p.  916. 
  24. J. A. Wepman, "Analog-to-digital converters and their applications to radio receivers", IEEE Commun. Mag., vol. 33, pp.  39-45, 1995.
  25. H. J. Chaloupka and D. Jedamzik, "HTS-technology for UMTS radio base stations", in Proc. IEEE PIMRC, Boston, MA, 1998.
  26. R. Arnott, S. Ponnekanti, C. Taylor and H. J. Chaloupka, "Advanced base station technology", IEEE Commun. Mag., vol. 36, pp.  96-102, 1998.
  27. "Product specification", British Aerospace, Bristol, U.K., Doc. PSP/MCC/A0073/BAe, 1988.
  28. E. Tward, "Low power cryocoolers", presented at the Heraeus Seminar, Illmenau, Germany,May 1997.
  29. H. Laschütza, "Entwicklung von kryogenen kleinkühlern zur kühlung von tieftemperaturelektroniken", presented at the DKV-Tagung, Ulm, Germany,Nov. 1995.
  30. A. Fiedler and H. U. Häfner, "Auslegung und test von kryorefrigeratoren für HTC-telekommunikations-filter anwendungen", presented at the DKV-Tagung, Hamburg, Germany,Nov. 1997.
  31. G. Thummes, M. Mück, R. Landgraf, F. Giebeler and C. Heiden, "Pulse tube refrigerator for HTC SQUID operation", in Advances Cryogen. Eng., vol. 41B, 1996, p.  1463. 
  32. C. Wang, G. Thummes and C. Heiden, "A two-stage pulse tube cooler operating below 4K", Cryogen., vol. 37, p.  159, 1997.