2000 IEEE. Personal use of this material is permitted. However, permission to reprint/republish this material for advertising or promotional purposes or for creating new collective works for resale or redistribution to servers or lists, or to reuse any copyrighted component of this work in other works must be obtained from the IEEE.

IEEE Transactions on Microwave Theory and Techniques
Volume 48 Number 7, July 2000

Table of Contents for this issue

Complete paper in PDF format

Cryogenically Cooled Sapphire-Rutile Dielectric Resonators for Ultrahigh-Frequency Stable Oscillators for Terrestrial and Space Applications

Michael Edmund Tobar, Member, IEEE John Gideon Hartnett, Eugene N. Ivanov, Dominique Cros, Pierre Blondy and Pierre Guillon Senior Member, IEEE

Page 1265.

Abstract:

The highest short-term frequency-stable microwave resonator oscillators utilize liquid-helium-cooled sapphire dielectric resonators. The temperature coefficient of frequency of such resonators is very small due to residual paramagnetic impurities canceling the temperature coefficient of permittivity (TCP). At higher temperatures, which are accessible in space or with liquid nitrogen, the effect is too weak, and if extra impurities are added, the loss introduced is too great. An alternative technique involves using two low-loss dielectric materials with TCP of opposite sign. Following this approach, a sapphire-rutile resonator was designed with mode frequency-temperature turning points between 50-80 K, with Q-factors of order 10$^{7}$ . Previous designs used thin disks of rutile fixed to the ends of the sapphire cylinder. Due to the high permittivity of rutile, such resonators have a high density of spurious modes. By placing rings at the end faces instead of disks, the majority of the spurious modes are raised above the operation frequency and the requirement for thin disks is removed. Finite-element analysis has been applied and compares well with experiment. The application to the design of high stability"fly-wheel"oscillators for atomic frequency standards is discussed.

References

  1. M. E. Tobar and D. G. Blair, "Phase noise analysis of the sapphire loaded superconducting niobium cavity oscillator", IEEE Trans. Microwave Theory Tech., vol. 42, pp.  344-347, Feb.  1994.
  2. E. N. Ivanov, M. E. Tobar and R. A. Woode, "Applications of interferometric signal processing to phase noise reduction in microwave oscillators", IEEE Trans. Microwave Theory Tech., vol. 46, pp.  1537-1545, Oct.  1998.
  3. A. J. Giles, A. G. Mann, S. K. Jones, D. G. Blair and M. J. Buckingham, "A very high stability sapphire loaded superconducting cavity oscillator", Phys. B, vol. 165, pp.  145-146, 1990.
  4. A. N. Luiten, A. G. Mann and D. G. Blair, "Power stabilized exceptionally high stability cryogenic sapphire resonator oscillator", IEEE Trans. Instrum. Meas., vol. 44, pp.  132-135, Apr.  1995.
  5. S. Chang, A. G. Mann and A. N. Luiten, "Improved cryogenic sapphire oscillator with exceptionally high frequency stability", Electron. Lett.,
  6. S. K. Jones, D. G. Blair and M. J. Buckingham, "The effects of paramagnetic impurities on the frequency of sapphire loading superconducting resonators", Electron. Lett., vol. 24, pp.  346-347, 1988.
  7. A. G. Mann, A. J. Giles, D. G. Blair and M. J. Buckingham, "Ultra-stable cryogenic sapphire dielectric microwave resonators: Mode frequency-temperature compensation by residual paramagnetic impurities", J. Phys. D, Appl. Phys., vol. 25, pp.  1105-1109, 1992.
  8. A. N. Luiten, A. G. Mann and D. G. Blair, "Paramagnetic susceptibility and permittivity measurements at microwave frequencies in cryogenic sapphire resonators", J. Phys. D, Appl. Phys., vol. 29, pp.  2082-2090, 1996.
  9. J. G. Hartnett, M. E. Tobar, A. G. Mann, E. N. Ivanov, J. Krupka and R. Geyer, "Frequency-temperature compensation in Ti^3+ and Ti^4+ doped sapphire whispering gallery mode resonators", IEEE Trans. Ultrason., Ferroelect., Freq. Contr., vol. 46, pp.  993-1000, July  1999.
  10. M. Tobar, J. Krupka, R. Woode and E. Ivanov, "Dielectric frequency-temperature compensation of high quality sapphire dielectric resonators", in Proc. IEEE Int. Freq. Contr. Symp. Dig., 1996, pp.  799- 806. 
  11. M. E. Tobar, J. Krupka, J. G. Hartnett, E. N. Ivanov and R. A. Woode, "sapphire-rutile frequency-temperature compensated whispering gallery microwave resonators", in Proc. IEEE Int. Freq. Contr. Symp. Dig., 1997, pp.  1000- 1008. 
  12. N. Klein, A. Scholen, N. Tellmann, C. Zuccaro and K. W. Urban, "Properties and applications of HTS-shielded dielectric resonators: a state-of-the-art-report", IEEE Trans. Microwave Theory Tech., vol. 44, pp.  1369-1373, July  1996.
  13. J. Gallop, L. Hao, F. Abbas and C. D. Langham, "Frequency stability of dielectric loaded HTS microwave resonators", IEEE Trans. Appl. Superconduct., vol. 7, pp.  3504-3507,  June  1997.
  14. N. Klein, C. Zuccaro, U. Dahne, H. Schulz and N. Tellmann, "Dielectric properties of rutile and its use in high temperature superconducting resonators", J. Appl. Phys., vol. 78, pp.  6683-6686, 1995.
  15. M. Tobar, J. Krupka, E. Ivanov and R. Woode, "Anisotropic complex permittivity measurements of mono-crystalline rutile between 10-300 kelvin", J. Appl. Phys, vol. 83, pp.  1604-1609, 1998.
  16. J. G. Hartnett, M. E. Tobar, A. G. Mann, E. N. Ivanov, J. Krupka, S. N. Jacobson, L. Madsen and U. Helmerson, "Electromagnetic frequency-temperature compensation techniques for high-Q sapphire resonators.", in Proc. Asia-Pacific Microwave Conf., 1998, pp.  159-162. 
  17. J. Krupka, K. Derzakowski, A. Abramowicz, M. E. Tobar and R. Geyer, "Whispering gallery modes for complex permittivity measurements of ultra-low loss dielectric materials", IEEE Trans. Microwave Theory Tech., vol. 47, pp.  752-759, June  1999 .
  18. G. Santarelli, P. Laurent, P. Lemonde, A. Clairon, A. G. Mann, S. Chang, A. N. Luiten and C. Salomon, "Quantum projection noise in an atomic fountain: A high stability cesium frequency standard", Phys. Rev. Lett., pp.  4619-4622, 1999.
  19. G. J. Dick, "Local oscillator induced instabilities in trapped ion frequency standards", in Proc. Precise Time and Time Interval, Redondo Beach, CA, 1987, pp.  133-147. 
  20. G. Santarelli, C. Audoin, A. Makdissi, P. Laurent, G. J. Dick and A. Clarion, "Frequency stability degradation of an oscillator slaved to a periodically interrogated atomic resonator", IEEE Trans. Utrason., Ferroelect, Freq. Contr., vol. 45, pp.  887-894,  July  1998.
  21. M. Aubourg and P. Guillon, "A mixed finite element formulation for microwave device problems: Application to MIS structure", J. Electromag. Waves Applicat., vol. 45, pp.  371-386, 1991.
  22. P. Guillon and X. Jiao, "Resonant frequencies of whispering gallery dielectric resonators modes", Proc. Inst. Elect. Eng., vol. 134, pp.  497-501, 1987.
  23. J. Krupka, D. Cros, A. Luiten and M. Tobar, "Design of very high-Q sapphire resonators", Electron. Lett., vol. 32, pp.  670-671,  1996.
  24. C. J. Maggiore, A. M. Clogston, G. Spalek, W. C. Sailor and F. M. Mueller, "Low-loss microwave cavity using layered dielectric materials", Appl. Phys. Lett., vol. 64, pp.  1451-1453,  1994.
  25. A. N. Luiten, A. G. Mann and D. G. Blair, "High resolution measurement of the temperature-dependence of the Q, coupling and resonant frequency of a microwave resonator", IOP Meas. Sci. Technol., vol. 7, pp.  949-953, 1996.
  26. M. E. Tobar, J. G. Hartnett, D. Cros, P. Blondy, J. Krupka, E. N. Ivanov and P. Guillon, "Design of high-Q frequency-temperature compensated dielectric resonators", Electron. Lett., vol. 35, pp.  303-305, 1999.
  27. D. W. Allan, "Time and frequency (time domain) characterization, estimation and prediction of precision clocks and oscillators", IEEE Trans. Ultrason., Ferroelect., Freq. Contr., vol. UFFC-34, pp.  647-654, Nov.  1987.
  28. D. G. Santiago, G. J. Dick and R. T. Wang, "Frequency stability of 10 -13 in a compensated sapphire oscillator operating above 77 K", in Proc. IEEE Int. Freq. Cont. Symp. Dig., 1996, pp.  772-775.