2000 IEEE. Personal use of this material is permitted. However, permission to reprint/republish this material for advertising or promotional purposes or for creating new collective works for resale or redistribution to servers or lists, or to reuse any copyrighted component of this work in other works must be obtained from the IEEE.

IEEE Transactions on Microwave Theory and Techniques
Volume 48 Number 7, July 2000

Table of Contents for this issue

Complete paper in PDF format

Monte Carlo Simulation of Microwave Noise Temperature in Cooled GaAs and InP

Jose Miguel Miranda Pantoja, Member, IEEE Chih-I. Lin, Mohamed Shaalan, Jose Luis Sebastian and Hans L. Hartnagel Fellow, IEEE

Page 1275.

Abstract:

A simulation at microscopic level of the intrinsic microwave noise temperature associated to GaAs and InP semiconductors under far from equilibrium conditions has been performed. The dependence of the noise temperature on the electric field, doping level, and physical temperature has been investigated,and the results show the existence of threshold fields above which electron heating and partition noise due to intervalley scattering can make the cooling inefficient in terms of noise improvements. A comparison with available experimental data has also been made to verify the accuracy of the models used in the simulation.

References

  1. M. Trippe, G. Bosman and A. Van Der Ziel, "Transit time effects in the noise of Schottky barrier diodes", IEEE Trans. Microwave Theory Tech., vol. MTT-34, pp.  1183-1192, Nov.  1986.
  2. A. Jelenski, E. Kollberg and H. Zirath, "Broad band noise mechanisms and noise measurements of metal-semiconductor junctions", IEEE Trans. Microwave Theory Tech., vol. MTT-34, pp.  1193-1201, Nov.  1986.
  3. H. G. Zirath, S. M. Nielsen, H. Hjelmgren, L. P. Ramberg and E. L. Kollberg, "Temperature variable noise characteristics of Au-GaAs Schottky barrier millimeter-wave mixer diodes", IEEE Trans. Microwave Theory Tech., vol. 36, pp.  1469-1476, Nov.  1988 .
  4. A. Jelenski, A. Grüb, V. Krozer and H. L. Hartnagel, "New approach to the design and the fabrication of THz Schottky barrier diodes", IEEE Trans. Microwave Theory Tech., vol. 41, pp.  549-557, Apr.  1993 .
  5. M. W. Pospieszalski, "Modeling of noise parameters of MESFET's and MODFET's and their frequency and temperature dependence", IEEE Trans. Microwave Theory Tech., vol. 37, pp.  1340-1350, Sept.  1989 .
  6. A. Cappy, "Noise modeling and measurement techniques", IEEE Trans. Microwave Theory Tech., vol. 36, pp.  1-10, Jan.  1988.
  7. A. Cappy, A. Vanoverschelde, M. Schortgen, C. Versnaeyen and G. Salmer, "Noise modeling in submicrometer-gate two dimensional electron gas field effect transistor", IEEE Trans. Electron Devices, vol. ED-32, pp.  2787-2795, Dec.  1985.
  8. T. González, D. Pardo, L. Varani and L. Reggiani, "A microscopic interpretation of hot-electron noise in Schottky barrier diodes", Semiconduct. Sci. Technol., vol. 9, pp.  580-583, 1994.
  9. T. González, D. Pardo, L. Varani and L. Reggiani, "Monte Carlo analysis of noise spectra in Schottky-barrier diodes", Appl. Phys. Lett., vol. 63, no. 22, pp.  3040-3042, 1993.
  10. E. Starikov, P. Shiktorov, V. Gruzinskis, L. Varani, J. C. Vaissiere, J. P. Nougier and L. Reggiani, "Monte Carlo calculation of noise and small-signal impedance spectra in submicrometer GaAs n+ nn+ diodes", J. Appl. Phys., vol. 79, no. 1, pp.  242-252, 1996.
  11. T. González, D. Pardo, L. Varani and L. Reggiani, "Monte Carlo analysis of the behavior and spatial origin of electronic noise in GaAs MESFET's", IEEE Trans. Electron Devices, vol. 42, pp.  991 -998, May  1995.
  12. J. Mateos, T. González, D. Pardo, P. Tadyszak, F. Danneville and A. Cappy, "Numerical and experimental analysis of the static characteristics and noise in ungated recessed MESFET structures", Solid State Electron., vol. 39, no. 11, pp.  1629-1636, 1996.
  13. J. M. M. Pantoja, J. L. Sebastián and S. Muñoz, "Coupled maximum entropy-Monte Carlo estimation of microwave, mm-wave and sub mm-wave spectrum of velocity fluctuations in GaAs", Appl. Phys. Lett., vol. 72, no. 2, pp.  238-240, 1998.
  14. L. Varani, P. Houlet, J. C. Vaissiere, J. P. Nougier, E. Starikov, V. Gruzinskis, P. Shiktorov, L. Reggiani and L. Hlou, "A model noise temperature for non linear transport in semiconductors", J. Appl. Phys., vol. 80, no.  9, pp.  5067-5075, 1996.
  15. A. van der Ziel, Noise in Solid State Devices and Circuits, New York: Wiley, 1986.
  16. C. Jacoboni and P. Lugli, The Monte Carlo Method for Semiconductor Device Simulation, Berlin: Germany: Springer-Verlag, 1989.
  17. E. Sangiorgi, B. Ricco and F. Venturi, "MOS2: An efficient Monte Carlo simulator for MOS devices", IEEE Trans. Computer-Aided Design, pp.  259-271, July  1988.
  18. W. H. Press, B. P. Flannery, S. A. Teukolsky and W. T. Vetterling, Numerical Recipes in C: The Art of Scientific Computing , 2nd ed.   Cambridge: U.K.: Cambridge Univ. Press, 1995.
  19. J. M. Miranda, C. Lin, M. Shaalan, H. L. Hartnagel and J. L. Sebastian, "Influence of the minimization of self-scattering events on the Monte Carlo simulation of carrier transport in III-V semiconductors", Semiconduct. Sci. Technol., vol. 14, pp.  804-808, 1999.
  20. J. S. Blakemore, "Semiconducting and other major properties of gallium arsenide", J. Appl. Phys., vol. 53, no. 10, pp.  R123-R179, 1982.
  21. M. V. Fischetti, "Monte Carlo simulation of transport in technologically significant semiconductors of the diamond and zin-blende structures-Part I: Homogeneous transport", IEEE Trans. Electron Devices, vol. 38, pp.  634-649, Mar.  1991.
  22. T. Gonzalez, J. E. Velazquez, P. M. Gutierrez and D. Pardo, "Electron transport in InP under high electric field conditions", Semiconduct. Sci. Technol., vol. 7, pp.  31-36, 1992 .
  23. J. M. M. Pantoja and J. L. Sebastián, "Monte Carlo simulation of electron velocity in degenerate GaAs", IEEE Trans. Electron Device Lett., vol. 18, pp.  258-260, June  1997.
  24. M. Shur, Physics of Semiconductor Devices, Englewood Cliffs, NJ: Prentice-Hall, 1990.
  25. V. Bareikis, J. Liberis, I. Matulionienè, A. Matulionis and P. Sakalas, "Experiments on hot electron noise in semiconductor materials for high-speed devices", IEEE Trans. Electron Devices, vol. 41, pp.  2050 -2060, Nov.  1994.
  26. T. Gonzalez, J. E. Velazquez, P. M. Gutierrez and D. Pardo, "Analysis of the transient spectral density of velocity fluctuations in GaAs and InP", J. Appl. Phys., vol. 72, no. 6, pp.  2322-2330, 1992.
  27. P. Shiktorov, V. Gruzhinskis, E. Starikov, L. Reggiani and L. Varani, "Transient-time effect on electronic noise in submicron n+ nn+ structures", Appl. Phys. Lett., vol. 68, no.  11, pp.  1516-1518, 1996.