2000 IEEE. Personal use of this material is permitted. However, permission to reprint/republish this material for advertising or promotional purposes or for creating new collective works for resale or redistribution to servers or lists, or to reuse any copyrighted component of this work in other works must be obtained from the IEEE.

IEEE Transactions on Microwave Theory and Techniques
Volume 48 Number 8, August 2000

Table of Contents for this issue

Complete paper in PDF format

Fabrication and Characterization of Micromachined Rectangular Waveguide Components for Use at Millimeter-Wave and Terahertz Frequencies

John W. Digby, Associate Member, IEEE Caroline E. McIntosh, Member, IEEE Geoff M. Parkhurst, Brian M. Towlson, Silas Hadjiloucas, Member, IEEE John W. Bowen, J. Martyn Chamberlain, Member, IEEE Roger D. Pollard, Fellow, IEEE Robert E. Miles, Member, IEEE D. Paul Steenson, Member, IEEE Lucas S. Karatzas, Member, IEEE Nigel J. Cronin and Steve R. Davies

Page 1293.

Abstract:

The fabrication and characterization of micromachined reduced-height air-filled rectangular waveguide components suitable for integration is reported in this paper. The lithographic technique used permits structures with heights of up to 100 µm to be successfully constructed in a repeatable manner. Waveguide S-parameter measurements at frequencies between 75-110 GHz using a vector network analyzer demonstrate low loss propagation in the TE10 mode reaching 0.2 dB per wavelength. Scanning electron microscope photographs of conventional and micromachined waveguides show that the fabrication technique can provide a superior surface finish than possible with commercially available components. In order to circumvent problems in efficiently coupling free-space propagating beams to the reduced-height G -band waveguides, as well as to characterize them using quasi-optical techniques, a novel integrated micromachined slotted horn antenna has been designed and fabricated. E-, H-, and D-plane far-field antenna pattern measurements at different frequencies using a quasi-optical setup show that the fabricated structures are optimized for 180-GHz operation with an E-plane half-power beamwidth of 32° elevated 35° above the substrate, a symmetrical H-plane pattern with a half-power beamwidth of 23° and a maximum D-plane cross-polar level of -33 dB. Far-field pattern simulations using HFSS show good agreement with experimental results.

References

  1. J. M. Chamberlain, and R. E. Miles, Eds., New Directions in Terahertz Technology, Norwell, MA: Kluwer, 1997.
  2. L. P. B. Katehi, "Novel Transmission lines for the submillimeter-wave region", Proc. IEEE, vol. 80, pp.  1771 -1787, Nov.  1992.
  3. A. S. Treen and N. J. Cronin, in"Proc. 18th Int. IR Millimeter Waves Conf.", 1993, pp.  470-471. 
  4. D. A. Brown, A. S. Treen and N. J. Cronin, "Micromachining of Terahertz Waveguide Components with Integrated Active Devices", in Proc. 19th Int. IR Millimeter Waves Conf. , Oct. 1994, pp.  359-360. 
  5. G. M. Parkhurst, D. A. Brown, J. M. Chamberlain, J. R. Middleton, N. J. Cronin, C. Collins, R. D. Pollard, R. E. Miles, D. P. Steenson, J. Bowen and M. Henini, "Integrated Resonant Tunnel Diode", in Proc. 19th Int. IR Millimeter Waves Conf., Dec. 1995.
  6. S. Lucyszyn, Q. H. Wang and I. D. Robertson, "0.1 THz rectangular waveguide on GaAs semi-insulating substrate", Electron. Lett., vol. 31, no.  9, pp.  721-722, Apr.  1995.
  7. C. E. Collins, R. D. Pollard, R. E. Miles, D. P. Steenson, G. M. Parkhurst, J. M. Chamberlain, N. J. Cronin and J. W. Bowen, "The TINTIN project and the need for integrated antennas at terahertz frequencies", in Proc. 1996 Int. Antennas Propagat. Symp. , Chiba, Japan,Sept. 1996, pp.  1229-1232. 
  8. J. W. Digby, C. E. Collins, B. M. Towlson, L. S. Karatzas, G. M. Parkhurst, J. M. Chamberlain, J. W. Bowen, R. D. Pollard, R. E. Miles, D. P. Steenson, D. A. Brown and N. J. Cronin, "Integrated micro-machined antenna for 200 GHz operation", in IEEE MTT-S Int. Microwave Symp. Dig., Denver, CO, 1997, pp.  561- 564. 
  9. G. M. Rebeiz, "Millimeter-wave and terahertz integrated circuit antennas", Proc. IEEE, vol. 80, pp.  1748-1770, Nov.  1992.
  10. K. Y. Lee, N. LaBianca, S. A. Rishton, S. Zolgharmain, J. D. Gelorme, J. Shaw and T. H-P. Chang, "Micromachining applications of a high resolution ultrathick photoresist", J. Vac. Sci. Technol. B, Microelectorn. Process. Phenom., vol. 13, no. 6, pp.  3012-3016, 1995.
  11. C. E. Collins, R. E. Miles, J. W. Digby, G. M. Parkhurst, R. D. Pollard, J. M. Chamberlain, D. P. Steenson, N. J. Cronin, S. R. Davies and J. W. Bowen, "A new micro-machined millimeter-wave and Terahertz snap-together rectangular waveguide technology", IEEE Microwave Guided Wave Lett., vol. 9, pp.  63-65, Feb.  1999.
  12. "Network Analysis-Applying the HP8510B TRL calibration for noncoaxial measurements", Hewlett-Packard Company, Santa Rosa, CA, HP Product note 8510-8,
  13. N. J. Cronin, Microwave and Optical Waveguides, London: U.K.: IOP, 1995.
  14. B. M. Towlson, "Ph.D. dissertation", Dept. Cybernet.,Univ. Reading, Reading, U.K., 1999 .
  15. E. R. Brown and C. D. Parker, "Resonant tunnel diodes as submillimeter-wave sources", Philos. Trans. R. Soc. London A, Math. Phys. Sci., vol. A354, pp.  2365-2381, 1996.
  16. G. Millington, R. E. Miles, R. D. Pollard, D. P. Steenson and J. M. Chamberlain, "A resonant tunnelling diode self-oscillating mixer with conversion gain", IEEE Microwave Guided Wave Lett., pp.  320-322, Nov.  1991.