2000 IEEE. Personal use of this material is permitted. However, permission to reprint/republish this material for advertising or promotional purposes or for creating new collective works for resale or redistribution to servers or lists, or to reuse any copyrighted component of this work in other works must be obtained from the IEEE.

IEEE Transactions on Microwave Theory and Techniques
Volume 48 Number 8, August 2000

Table of Contents for this issue

Complete paper in PDF format

A Single-Chip GaAs MMIC Image-Rejection Front-End for Digital European Cordless Telecommunications

Farahnaz Sabouri-S., Christian Christensen, Life Member, IEEE and Torben Larsen Member, IEEE

Page 1318.

Abstract:

An active image-rejection filter is presented in this paper,which applies actively coupled passive resonators. The filter has very low noise and high insertion gain, which may eliminate the use of a low-noise amplifier (LNA) in front-end applications. The GaAs monolithic-microwave integrated-circuit (MMIC) chip area is 3.3 mm2. The filter has 12-dB insertion gain, 45-dB image rejection, 6.2-dB noise figure, and dissipates 4.3 mA from a 3-V supply. A MMIC mixer is also presented. The mixer applies two single-gate MESFET's on a 2.2-mm2 GaAs substrate. The mixer has 2.5-dB conversion gain and better than 8-dB single-sideband (SSB) noise figure with a current dissipation of 3.5 mA applying a single 5-V supply. The mixer exhibits very good local oscillator (LO)/RF and LO/IF isolation of better than 30 and 17 dB, respectively. Finally, the entire front-end,including the LNA, image rejection filter, and mixer functions is realized on a 5.7-mm2 GaAs substrate. The front-end has a conversion gain of 15 dB and an image rejection of more than 53 dB with 0-dBm LO power. The SSB noise figure is better than 6.4 dB. The total power dissipation of the front-end is 33 mW. The MMIC's are applicable as a single-block LNA and image-rejection filter, mixer, and single-block front-end in digital European cordless telecommunications. With minor modifications, the MMIC's can be applied in other wireless communication systems working around 2 GHz,e.g., GSM-1800 and GSM-1900.

References

  1. J. Birkeland, "A low power GaAs MESFET monolithic downconverter for digital handheld telephone applications", in IEEE MTT-S Int. Microwave Symp. Dig. , 1993, pp.  1105-1108. 
  2. Motorola Communications Semiconductor Product Division "A 1.9 GHz chipset for PCS applications", Microwave J., vol. 38, no. 6, pp.  96-100, June  1995.
  3. K. Fujumoto, T. Kunihisa, S. Yamamoto, H. Fujimoto, Y. Ota and O. Ishikawa, "A high perfrmance GaAs MMIC transceiver for personal handy phone system (PHS)", in Proc. 25th European Microwave Conf., Bologna, Italy,September 4-7 1995, pp.  926-930. 
  4. J. R. Long and M. A. Copeland, "A 1.9 GHz low-voltage silicon bipolar receiver front-end for wireless personal communications systems", IEEE J. Solid-State Circuits, vol. 30, pp.  1438-1448, Dec.  1995.
  5. J. Itoh, T. Nakatsuka, M. Nishitsuji, T. Uda and O. Ishikawa, "A 1.0-V GaAs receiver front-end IC for mobile communication equipment", in IEEE Microwave Millimeter-Wave Monolithic Circuits Symp. Dig., 1996, pp.  77- 80. 
  6. M. Nakayama, K. Mori, N. Ogata, Y. Mitsui, H. Yuura, Y. Yoshii, K. Yamamoto, K. Maemura and O. Ishida, "A 1.9-GHz single-chip RF front-end GaAs for personal communications", in IEEE Microwave Millimeter-Wave Monolithic Circuits Symp. Dig., 1996, pp.  69-72. 
  7. J. Fenk, "Highly integrated RF-IC's for GSM and DECT systems-A status review", IEEE Trans. Microwave Theory Tech., vol. 45, pp.  2531-2539, Dec.  1997.
  8. "Radio equipment and systems (RES); Digital European cordless telecommunications (DECT), common interface, Part 2: Physical layer", European Telecommunication Standards Institute (ETSI), Sophia Antipolis, France, Tech. Rep. ETS 300 175-2,Ref. DE/RES-3001-2, Oct. 1992.
  9. "Design Manual-GaAs Foundry Services F14/F15", GEC-Marconi Mater. Tech. Ltd., Caswell, U.K., 1995.
  10. P. Alinikula, R. Kaunisto and K. Stadius, "Monolithic active resonators for wireless applications", in IEEE MTT-S Int. Microwave Symp. Dig., San Diego, CA, May 23-27 1994, pp.  1151-1154. 
  11. C. Rauscher, "Microwave active filters based on transversal and recursive principles", IEEE Trans. Microwave Theory Tech., vol. MTT-33, pp.  1350-1360, Dec.  1985.
  12. C. Rauscher, "Distributed microwave active filters with GaAs FETs", in IEEE MTT-S Int. Microwave Symp. Dig., St. Louis, MO, Apr. 1985, pp.  273-276. 
  13. U. Karacaoglu and I. D. Robertson, "MMIC active bandpass filters using varactor-tuned negative resistance elements", IEEE Trans. Microwave Theory Tech., vol. 43, pp.  2926-2932, Dec.  1995.
  14. R. V. Snyder and D. L. Bozarth, "Analysis and design of a microwave transistor active filter", IEEE Trans. Microwave Theory Tech., vol. MTT-18, pp.  2-9, Jan.  1970.
  15. E. C. Krantz and G. R. Branner, "Active microwave filters with noise performance considerations", IEEE Trans. Microwave Theory Tech., vol. 42, pp.  1368-1379, July  1994.
  16. F. Sabouri-S., "A MMIC DECT front-end-with special emphasis on active filter", Ph.D. dissertation, Aalborg Univ., Aalborg, Denmark, May 1997 .
  17. C. Tsironis and R. Meierer, "Microwave wide-band model of GaAs dual gate MESFET's", IEEE Trans. Microwave Theory Tech., vol. MTT-30, pp.  243-251, Mar.  1982.
  18. C. Tsironis, R. Meierer and R. Stahlmann, "Dual-gate MESFET mixers", IEEE Trans. Microwave Theory Tech., vol. MTT-32, pp.  248-255, Mar.   1984.
  19. Y. Imai, M. Tokumitsu and A. Minakawa, "Design and performance of low-current GaAs MMIC's for L -band front-end applications", IEEE Trans. Microwave Theory Tech., vol. 39, pp.  209 -215, Feb.  1991.