2000 IEEE.
Personal use of this material is
permitted. However, permission to reprint/republish this
material for advertising or promotional purposes or for
creating new collective works for resale or redistribution
to servers or lists, or to reuse any copyrighted component
of this work in other works must be obtained from the
IEEE.
IEEE Transactions on Microwave Theory and Techniques
Volume 48 Number 8, August 2000
Table of Contents for this issue
Complete paper in PDF format
Micromachined Microwave Planar
Spiral Inductors and Transformers
Renato P. Ribas, Jérome Lescot, Jean-Louis Leclercq, Jean Michel Karam, Member, IEEE and Fabien Ndagijimana
Page 1326.
Abstract:
A new micromachined planar spiral inductor, with the strips suspended
individually, has been fabricated in standard GaAs high electron-mobility
transistor monolithic-microwave integrated-circuit technology through maskless
front-side bulk micromachining. The electronic compatibility, the use of industrial
integrated-circuit production lines, the straightforward and low-cost additional
procedure for structure releasing, and the very short etching time required
to do such are the principal features related to such a novel inductor structure.
Moreover, the air-gap layer created underneath the device and between
the strips significantly reduces shunt and fringing parasitic capacitances,consequently increasing the performance and operating frequency range. Experimental
measurements, carried out up to 15 GHz, before and after micromachining, showed
for a 12-nH inductor an increase of the maximum Q
factor from 5 (at 3 GHz) to about 20 (at 7 GHz), while the self-resonant frequency
was shifted from 5 to 13 GHz. Furthermore, a structure with two interleaved
spiral inductors, in a 1: 1 transformer-like configuration,was also fabricated, and its performance was verified as well in order to
demonstrate the promising performance improvements provided by the proposed
device. Finally, heating and mechanical characteristics associated with freestanding
microstructures are briefly evaluated using finite-element method simulations.
References
-
L. M. Burns, "Integrated circuit technology options for RFIC's-present status and future directions", IEEE J. Solid-State Circuits, vol. 33, pp. 387-399, Mar. 1998.
-
J. N. Burghartz, M. Soyuer and K. A. Jenkins, "Microwave inductors and capacitors in standard multilevel interconnect silicon technology", IEEE Trans. Microwave Theory Tech., vol. 44, pp.
100-104, Jan. 1996.
-
A. C. Reyes, S. M. El-Ghazaly, S. J. Dorn, M. Dydyk, D. K. Schroder and H. Patterson, "Coplanar waveguides and microwave inductors on silicon substrates", IEEE Trans. Microwave Theory Tech., vol. 43, pp.
2016-2022, Sept. 1995.
-
K. B. Ashby, I. A. Koullias, W. C. Finley, J. J. Bastek and S. Moinian, "High Q inductors for wireless applications in a complementary silicon bipolar process", IEEE J. Solid-State Circuits, vol.
31, pp. 4-9, Jan. 1996.
-
M. Park, S. Lee, H. K. Yu, J. G. Koo and K. S. Nam, "High Q CMOS-compatible microwave inductors using double-metal interconnection silicon technology", IEEE Microwave Guided Wave Lett., vol. 7, pp.
45-47, Feb. 1997.
-
J. N. Burghartz, D. C. Edelstein, K. A. Jenkins and Y. H. Kwark, "Spiral inductor and transmission lines in silicon technology using copper-damascene interconnects and low-loss substrates", IEEE Trans.
Microwave Theory Tech., vol. 45, pp. 1961-1968, Oct. 1997
.
-
C.-Y. Chi, and G. M. Rebeiz, "Planar microwave and millimeter-wave lumped elements and coupled-line filters using micro-machining techniques", IEEE Trans. Microwave Theory Tech., vol. 43, pp.
730-738, Apr. 1995.
-
T. M. Weller, K. J. Herrick and L. P. B. Katehi, "Quasi-static design technique for mm-wave micromachined filters with lumped elements and series stubs", IEEE Trans. Microwave Theory Tech., vol. 45, pp. 931-938, June 1997.
-
J. Y.-C. Chang, A. A. Abidi and M. Gaitan, "Large suspended inductors on silicon and their use in a 2-µ m CMOS RF amplifier",
IEEE Electron Device Lett., vol. 14, pp. 246-248, May 1993.
-
V. Milanovic, M. Gaitan, E. D. Bowen and M. E. Zaghloul, "Micromachined microwave transmission lines in CMOS technology", IEEE Trans. Microwave
Theory Tech., vol. 45, pp. 630-635, May 1997.
-
J. M. López-Villegas, J. Samitier, J. Bausells, A. Merlos, C. Cané and R. Knöchel, "Study of integrated RF passive components performed using CMOS and Si micromachining technologies", J. Micromech. Microeng., vol. 7, pp.
162-164, 1997.
-
S. M. Sze, Semiconductor Sensors, New York: Wiley, 1994.
-
R. P. Ribas, N. Bennouri, J. M. Karam and B. Courtois, "GaAs MEMS design using 0.2 µ m HEMT MMIC technology", in IEEE GaAs IC Tech. Symp. Dig., Oct. 1997, pp. 127-130.
-
E. Frlan, S. Meszaros, M. Cuhaci and J. S. Wight, "Computer aided design of square spiral transformers and inductors", in IEEE MTT-S Int. Microwave Symp. Dig., Long Beach, CA, June 1989, pp. 661-664.
-
G. G. Rabjohn, "Monolithic microwave transformers",
M. Eng. thesis, Carleton Univ., Ottawa, Ont., Canada, 1991.
-
"D02AH Design Manual", Philips Microwave, Limeil, France, Doc. PML-G-SC-0008-E
/ V2.0, Jan. 1997.
-
R. P. Ribas, J. L. Leclercq, J. M. Karam, B. Courtois and P. Viktorovitch, "Bulk micromachining characterization of 0.2 µ m HEMT MMIC technology for GaAs MEMS design", Mater. Sci. Eng., no. 1-3, pp. 267-273, Feb. 1998.
-
W. R. Eisenstadt and Y. Eo, "S -parameter-based IC interconnect transmission line characterization", IEEE Trans. Comp., Hybrids, Manufact. Technol., vol. 15, no. 4, Aug. 1992.
-
E. Pettenpaul, H. Kaputsa, A. Weisgerber, H. Mampe, J. Luginsland and I. Wolff, "CAD models of lumped elements on GaAs up to 18 GHz", IEEE Trans. Microwave Theory Tech., vol. 36, pp. 294-304, Feb. 1988.
-
F. W. Grover, Inductance Calculations,
New York: Van Nostrand, 1946.
-
D. Krafesik and D. Dawson, "A closed-form expression for representing the distributed nature of the spiral inductor", in IEEE MTT-S Monolithic Circuits Symp. Dig., Baltimore, MD, 1986, pp. 87-91.
-
H. M. Greenhouse, "Design of planar rectangular microelectronic inductors", IEEE Trans. Parts, Mater., Packag., vol. PMP-10, pp. 101-109, June 1974.
-
B. Courtois, "Access to microsystem technology: The MPC services solution", Microelectron. J., vol. 28, no. 4, pp.
407-417, May 1997.
-
P. J. Van Wijnen, H. R. Claessen and E. A. Wolshereimer, "A new straight forward calibration and correction procedure for on-wafer high frequency S -parameter measurements (45 MHz-18 GHz)", in BCTM Dig. , 1987, pp. 70-73.
-
C. Song, "Commercial vision of siliconed inertial sensors", in Proc. Int. Solid-State Sens. Actuators-Transducers'97 Conf., Chicago, IL, pp. 839-842.