2000 IEEE. Personal use of this material is permitted. However, permission to reprint/republish this material for advertising or promotional purposes or for creating new collective works for resale or redistribution to servers or lists, or to reuse any copyrighted component of this work in other works must be obtained from the IEEE.

IEEE Transactions on Microwave Theory and Techniques
Volume 48 Number 8, August 2000

Table of Contents for this issue

Complete paper in PDF format

Micromachined Microwave Planar Spiral Inductors and Transformers

Renato P. Ribas, Jérome Lescot, Jean-Louis Leclercq, Jean Michel Karam, Member, IEEE and Fabien Ndagijimana

Page 1326.

Abstract:

A new micromachined planar spiral inductor, with the strips suspended individually, has been fabricated in standard GaAs high electron-mobility transistor monolithic-microwave integrated-circuit technology through maskless front-side bulk micromachining. The electronic compatibility, the use of industrial integrated-circuit production lines, the straightforward and low-cost additional procedure for structure releasing, and the very short etching time required to do such are the principal features related to such a novel inductor structure. Moreover, the air-gap layer created underneath the device and between the strips significantly reduces shunt and fringing parasitic capacitances,consequently increasing the performance and operating frequency range. Experimental measurements, carried out up to 15 GHz, before and after micromachining, showed for a 12-nH inductor an increase of the maximum Q factor from 5 (at 3 GHz) to about 20 (at 7 GHz), while the self-resonant frequency was shifted from 5 to 13 GHz. Furthermore, a structure with two interleaved spiral inductors, in a 1: 1 transformer-like configuration,was also fabricated, and its performance was verified as well in order to demonstrate the promising performance improvements provided by the proposed device. Finally, heating and mechanical characteristics associated with freestanding microstructures are briefly evaluated using finite-element method simulations.

References

  1. L. M. Burns, "Integrated circuit technology options for RFIC's-present status and future directions", IEEE J. Solid-State Circuits, vol. 33, pp.  387-399, Mar.  1998.
  2. J. N. Burghartz, M. Soyuer and K. A. Jenkins, "Microwave inductors and capacitors in standard multilevel interconnect silicon technology", IEEE Trans. Microwave Theory Tech., vol. 44, pp.  100-104, Jan.  1996.
  3. A. C. Reyes, S. M. El-Ghazaly, S. J. Dorn, M. Dydyk, D. K. Schroder and H. Patterson, "Coplanar waveguides and microwave inductors on silicon substrates", IEEE Trans. Microwave Theory Tech., vol. 43, pp.  2016-2022, Sept.  1995.
  4. K. B. Ashby, I. A. Koullias, W. C. Finley, J. J. Bastek and S. Moinian, "High Q inductors for wireless applications in a complementary silicon bipolar process", IEEE J. Solid-State Circuits, vol.  31, pp.  4-9, Jan.  1996.
  5. M. Park, S. Lee, H. K. Yu, J. G. Koo and K. S. Nam, "High Q CMOS-compatible microwave inductors using double-metal interconnection silicon technology", IEEE Microwave Guided Wave Lett., vol. 7, pp.  45-47, Feb.  1997.
  6. J. N. Burghartz, D. C. Edelstein, K. A. Jenkins and Y. H. Kwark, "Spiral inductor and transmission lines in silicon technology using copper-damascene interconnects and low-loss substrates", IEEE Trans. Microwave Theory Tech., vol. 45, pp.  1961-1968, Oct.  1997 .
  7. C.-Y. Chi, and G. M. Rebeiz, "Planar microwave and millimeter-wave lumped elements and coupled-line filters using micro-machining techniques", IEEE Trans. Microwave Theory Tech., vol. 43, pp.  730-738, Apr.  1995.
  8. T. M. Weller, K. J. Herrick and L. P. B. Katehi, "Quasi-static design technique for mm-wave micromachined filters with lumped elements and series stubs", IEEE Trans. Microwave Theory Tech., vol. 45, pp.  931-938, June  1997.
  9. J. Y.-C. Chang, A. A. Abidi and M. Gaitan, "Large suspended inductors on silicon and their use in a 2-µ m CMOS RF amplifier", IEEE Electron Device Lett., vol. 14, pp.  246-248, May  1993.
  10. V. Milanovic, M. Gaitan, E. D. Bowen and M. E. Zaghloul, "Micromachined microwave transmission lines in CMOS technology", IEEE Trans. Microwave Theory Tech., vol. 45, pp.  630-635, May  1997.
  11. J. M. López-Villegas, J. Samitier, J. Bausells, A. Merlos, C. Cané and R. Knöchel, "Study of integrated RF passive components performed using CMOS and Si micromachining technologies", J. Micromech. Microeng., vol. 7, pp.  162-164, 1997.
  12. S. M. Sze, Semiconductor Sensors, New York: Wiley, 1994.
  13. R. P. Ribas, N. Bennouri, J. M. Karam and B. Courtois, "GaAs MEMS design using 0.2 µ m HEMT MMIC technology", in IEEE GaAs IC Tech. Symp. Dig., Oct. 1997, pp.  127-130. 
  14. E. Frlan, S. Meszaros, M. Cuhaci and J. S. Wight, "Computer aided design of square spiral transformers and inductors", in IEEE MTT-S Int. Microwave Symp. Dig., Long Beach, CA, June 1989, pp.  661-664. 
  15. G. G. Rabjohn, "Monolithic microwave transformers", M. Eng. thesis, Carleton Univ., Ottawa, Ont., Canada, 1991.
  16. "D02AH Design Manual", Philips Microwave, Limeil, France, Doc. PML-G-SC-0008-E / V2.0, Jan. 1997.
  17. R. P. Ribas, J. L. Leclercq, J. M. Karam, B. Courtois and P. Viktorovitch, "Bulk micromachining characterization of 0.2 µ m HEMT MMIC technology for GaAs MEMS design", Mater. Sci. Eng., no. 1-3, pp.  267-273, Feb.  1998.
  18. W. R. Eisenstadt and Y. Eo, "S -parameter-based IC interconnect transmission line characterization", IEEE Trans. Comp., Hybrids, Manufact. Technol., vol. 15, no. 4, Aug.  1992.
  19. E. Pettenpaul, H. Kaputsa, A. Weisgerber, H. Mampe, J. Luginsland and I. Wolff, "CAD models of lumped elements on GaAs up to 18 GHz", IEEE Trans. Microwave Theory Tech., vol. 36, pp.  294-304, Feb.  1988.
  20. F. W. Grover, Inductance Calculations, New York: Van Nostrand, 1946.
  21. D. Krafesik and D. Dawson, "A closed-form expression for representing the distributed nature of the spiral inductor", in IEEE MTT-S Monolithic Circuits Symp. Dig., Baltimore, MD, 1986, pp.  87-91. 
  22. H. M. Greenhouse, "Design of planar rectangular microelectronic inductors", IEEE Trans. Parts, Mater., Packag., vol. PMP-10, pp.  101-109, June  1974.
  23. B. Courtois, "Access to microsystem technology: The MPC services solution", Microelectron. J., vol. 28, no. 4, pp.  407-417, May  1997.
  24. P. J. Van Wijnen, H. R. Claessen and E. A. Wolshereimer, "A new straight forward calibration and correction procedure for on-wafer high frequency S -parameter measurements (45 MHz-18 GHz)", in BCTM Dig. , 1987, pp.  70-73. 
  25. C. Song, "Commercial vision of siliconed inertial sensors", in Proc. Int. Solid-State Sens. Actuators-Transducers'97 Conf., Chicago, IL, pp.  839-842.