2000 IEEE. Personal use of this material is permitted. However, permission to reprint/republish this material for advertising or promotional purposes or for creating new collective works for resale or redistribution to servers or lists, or to reuse any copyrighted component of this work in other works must be obtained from the IEEE.

IEEE Transactions on Microwave Theory and Techniques
Volume 48 Number 8, August 2000

Table of Contents for this issue

Complete paper in PDF format

Reconstructing Permittivity Profiles Using Integral Transforms and Improved Renormalization Techniques

M. J. Akhtar, Student Member, IEEE and Abbas S. Omar Senior Member, IEEE

Page 1385.

Abstract:

Some new ideas for reconstructing permittivity profiles in planar and cylindrical objects illuminated by TEM-, TE-or TM-polarized waves are presented in this paper. For a planar medium, an improved renormalization technique along with a revised version of the nonlinear Riccati differential equation describing the direct problem are introduced. A nonlinear Riccati-similar differential equation for the cylindrical case has also been derived here for the first time, which helps reconstructing radially varying permittivity profiles in a way parallel to that of the planar case. The above-mentioned renormalization technique has been used for the cylindrical case as well to solve the inverse problem making use of a Hankel transform. The method represents fundamental bases for a three-dimensional generalization, which is essential for microwave imaging used, e.g., in biomedical applications and for the diagnostic of diseases in trees and vegetation. A known permittivity profile has been taken to generate synthetic reflection-coefficient data by solving the nonlinear equations describing the direct problems using MATLAB. These data have been used in conjunction with the proposed technique to reconstruct the permittivity profile. About 50-100 data points over the wavelength range from a minimum value (ranging from one-tenth to one-fifth of a typical length in the structure) to infinity have been used for the reconstruction. Reconstructed profiles have been compared to the original ones for a number of cases. Deviations of less than 2% have been achieved.

References

  1. D. K. Ghodgaonkar, O. P. Gandhi and M. J. Hagmann, "Estimation of complex permittivities of a three-dimensional inhomogeneous biological bodies", IEEE Trans. Microwave Theory Tech., vol. MTT-31, pp.  442-446, June  1983.
  2. A. Broquetas, J. Romeu, J. M. Rius, A. R. Elias-Fuste, A. Cardama and L. Jofre, "Cylindrical geometry: A further step in active microwave tomography", IEEE Trans. Microwave Theory Tech., vol. 39, pp.  836-844, May  1991.
  3. N. Joachimowicz, J. J. Mallorqui, J.-C. Bolomey and A. Broquetas, "Convergence and stability assessment of Newton-Kantorovich reconstruction algorithm for microwave tomography", IEEE Trans. Med. Imag., vol. 17, pp.  562-570, Aug.  1998 .
  4. N. Joachimowicz, C. Pichot and J.-P. Hugonin, "Inverse scattering: An iterative numerical method for electromagnetic imaging", IEEE Trans. Antennas Propagat., vol. 39, pp.  1743-1752, Dec.  1991.
  5. S. Caorsi, G. L. Gragnani and M. Pastorino, "Reconstruction of dielectric permittivity distributions in arbitrary 2-D inhomogeneous biological bodies by a multiview microwave numerical method", IEEE Trans. Med. Imag., vol. 12, pp.  232-239, June  1993.
  6. L. Tsang and J. A. Kong, "Application of strong fluctuation random medium theory to scattering from vegetation-like half space", IEEE Trans. Geosci. Remote Sensing, vol. GRS-19, pp.  62-69, 1981.
  7. M. O. Kolawole, "Scattering from dielectric cylinders having radially layered permittivity", J. Electromag. Waves Applicat., vol. 6, pp.  235-259, 1992.
  8. M. A. Karam, A. K. Fung and Y. M. M. Antar, "Electromagnetic wave scattering from some vegetation samples", IEEE Trans. Geosci. Remote Sensing, vol. 26, pp.  799-807, Nov.  1988.
  9. T. M. Habashy and R. Mittra, "Review of some inverse methods in electromagnetics", J. Opt. Soc. Amer. A, Opt. Image Sci., vol. 4, pp.  281-291, Jan.  1987.
  10. J. J. Xia, T. M. Habashy and J. A. Kong, "Profile inversion in a cylindrically stratified lossy medium", Radio Sci., vol. 29, pp.  1131 -1141, July-Aug.  1994.
  11. T. M. Habashy, W. C. Chew and E. Y. Chow, "Simultaneous reconstruction of permittivity and conductivity profiles in a radially inhomogeneous slab", Radio Sci. , vol. 21, pp.  635-645, July-Aug.  1986.
  12. P. V. Frangos and D. l. Jaggard, "A numerical solution to the Zakharov-Shabat inverse scattering problem", IEEE Trans. Antennas Propagat., vol. 39, pp.  74-79,  Jan.  1991.
  13. W. Tabarra, "Reconstruction of permittivity profiles from a spectral analysis of the reflection coefficient", IEEE Trans. Antennas Propagat., vol. AP-27, pp.  241-248, Mar.  1979.
  14. A. K. Jordan and H. D. Ladouceur, "Renormalization of an inverse-scattering theory for discontinuous profiles", Phys. Rev. A, Gen. Phys., vol. 36, p.  4245, 1987.
  15. T. J. Cui and C. H. Liang, "Reconstruction of the permittivity profile of an inhomogeneous medium using an equivalent network method", IEEE Trans. Antennas Propagat., vol. 41, pp.  1719-1726, Dec.  1993.
  16. T. J. Cui and C. H. Liang, "Nonlinear differential equation for the reflection coefficient of an inhomogeneous lossy medium and its inverse scattering solutions", IEEE Trans. Antennas Propagat., vol. 42, pp.  621-626,  May  1994.
  17. T. J. Cui and C. H. Liang, "Novel applications of an approximate profile inversion for one-dimensional medium", IEEE Trans. Antennas Propagat., vol. 43, pp.  308-312, Mar.  1995.
  18. D. L. Jaggard and Y. Kim, "Accurate one-dimensional inverse scattering using a nonlinear renormalization technique", J. Opt. Soc. Amer. A, Opt. Image Sci. , vol. 2, pp.  1922-1930, Nov.  1985.
  19. R. E. Collin, Foundation for Microwave Engineering, New York: McGraw-Hill, 1966.
  20. R. F. Harrington, Time-Harmonic Electromagnetic Fields, New York: McGraw-Hill, 1961.
  21. K. I. Hopcraft and P. R. Smith, "Geometrical properties of backscattered radiation and their relation to inverse scattering", J. Opt. Soc. Amer. A, Opt. Image Sci., vol. 6, pp.  508-516, 1989.
  22. P. Morse and H. Feshbach, Methods of Theoretical Physics, New York, NY: McGraw-Hill, 1953.