2000 IEEE. Personal use of this material is permitted. However, permission to reprint/republish this material for advertising or promotional purposes or for creating new collective works for resale or redistribution to servers or lists, or to reuse any copyrighted component of this work in other works must be obtained from the IEEE.

IEEE Transactions on Microwave Theory and Techniques
Volume 48 Number 8, August 2000

Table of Contents for this issue

Complete paper in PDF format

Two-Dimensional Computer Analysis of a Microwave Flat Antenna Array for Breast Cancer Tomography

Alexandre E. Souvorov, Alexander E. Bulyshev, Serguei Y. Semenov, Robert H. Svenson and George P. Tatsis

Page 1413.

Abstract:

In this paper, we report a two-dimensional computer simulation of a microwave flat antenna array for breast cancer tomography. This new technology promises reduction of X-ray exposure and easier access to peripheral areas of the breast. Using our version of the Newton algorithm, we studied two simple mathematical objects and a more sophisticated two-dimensional model of the breast that takes into account dielectrical properties of different human tissues and malignant tumors. Our calculations show that, operating at 2 GHz,this device may give very reasonable images of tissues located up to 3-4 cm beneath the surface.

References

  1. L. E. Larsen, and L. H. Jacobi, Eds., Medical Applications of Microwave Imaging, NY: IEEE Press, 1986.
  2. J. C. Bolomey and M. S. Hawley, Methods of Hyperthermia Control, Berlin: Germany: Springer-Verlag, 1990, ch. 2.
  3. M. Miyakawa, and J. Bolomey, Eds., Non-Invasive Thermometry of the Human Body, Boca Raton, FL: CRC Press, 1996.
  4. S. Y. Semenov, R. H. Svenson, A. E. Bulyshev, A. E. Souvorov, V. Y. Borisov, Y. E. Sizov, A. N. Starostin, K. R. Dezern, G. P. Tatsis and V. Y. Baranov, "Microwave tomography: Two-dimensional system for biological imaging", IEEE Trans. Biomed. Eng., vol. 43, pp.  869-877, Sept.  1996.
  5. P. M. Meaney, K. D. Paulsen, A. Hartov and R. K. Crane, "An active microwave imaging system for reconstruction of 2-D electrical property distributions", IEEE Trans. Biomed. Eng., vol. 42, pp.  1017-1026, Oct.  1995.
  6. S. C. Hagness, A. Tafflove and J. E. Bridges, "Two-dimensional FDTD analysis of a pulsed microwave confocal system for breast cancer detection: Fixed-focus and antenna-array sensors", IEEE Trans. Biomed. Eng., vol. 28, pp.  1470-1479,  Dec.  1998.
  7. A. E. Souvorov, A. E. Bulyshev, S. Y. Semenov, R. H. Svenson, A. G. Nazarov, Y. E. Sizov and G. P. Tatsis, "Microwave tomography: A two-dimensional Newton iterative scheme", IEEE Trans. Microwave Theory Tech., vol. 46, pp.  1654-1659, Nov.  1998.
  8. A. J. Devaney, "Current research topics in diffraction tomography,"in Inverse Problems in Scattering and Imaging, M. Bertero, and E. R. Pike, Eds. New York: Adam Hilger, 1992, pp.  47-58. 
  9. S. Y. Semenov, A. E. Bulyshev, A. E. Souvorov, R. H. Svenson, Y. E. Sizov, V. Y. Borisov, V. G. Posukh, I. M. Kozlov and G. P. Tatsis, "Microwave tomography: Theoretical and experimental investigation of the iteration reconstruction algorithm", IEEE Trans. Microwave Theory Tech., vol. 46, pp.  133 -141, Feb.  1998.
  10. K. D. Paulsen, P. M. Meaney, M. J. Moskowitz and J. Sullivan, "A dual mesh scheme for finite element based reconstruction algorithms", IEEE Trans. Med. Imag., vol. 14, pp.  504-514, Mar.  1995.
  11. S. Gabriel, R. W. Lau and C. Gabriel, "The dielectric properties of biological tissues: III-Parametric models for the dielectric spectrum of tissues", Phys. Med. Biol., vol. 41, no. 11, pp.  2271-2293, 1996 .