2000 IEEE. Personal use of this material is permitted. However, permission to reprint/republish this material for advertising or promotional purposes or for creating new collective works for resale or redistribution to servers or lists, or to reuse any copyrighted component of this work in other works must be obtained from the IEEE.

IEEE Transactions on Microwave Theory and Techniques
Volume 48 Number 9, September 2000

Table of Contents for this issue

Complete paper in PDF format

CAD-Oriented Equivalent-Circuit Modeling of On-Chip Interconnects on Lossy Silicon Substrate

Ji Zheng, Member, IEEE Yeon-Chang Hahm, Student Member, IEEE Vijai K. Tripathi, Fellow, IEEE and Andreas Weisshaar Senior Member, IEEE

Page 1443.

Abstract:

A new, comprehensive CAD-oriented modeling methodology for single and coupled interconnects on an Si-SiO2 substrate is presented. The modeling technique uses a modified quasi-static spectral domain electromagnetic analysis which takes into account the skin effect in the semiconducting substrate. equivalent-circuit models with only ideal lumped elements, representing the broadband characteristics of the interconnects,are extracted. The response of the proposed SPICE compatible equivalent-circuit models is shown to be in good agreement with the frequency-dependent transmission line characteristics of single and general coupled on-chip interconnects.

References

  1. H. Hasegawa, M. Furukawa and H. Yanai, "Properties of microstrip line on Si-SiO 2 system", IEEE Trans. Microwave Theory Tech., vol. MTT-19, pp.  869-881, Nov.  1971.
  2. S. Zagge and E. Grotelüschen, "Characterization of the broadband transmission behavior of interconnections on silicon substrate", IEEE Trans. Components, Hybrids Manuf. Technol., vol. 16, pp.  686-691, Nov.  1993.
  3. V. Milanovic, M. Ozgur, D. C. DeGroot, J. A. Jargon, M. Gaitan and M. E. Zaghloul, "Characterization of broad-band transmission for coplanar waveguides on CMOS silicon substrates", IEEE Trans. Microwave Theory Tech., vol. 46, pp.  632-640, May  1998.
  4. T. Shibata and E. Sano, "Characterization of MIS structure coplanar transmission lines for investigation of signal propagation in integrated circuits", IEEE Trans. Microwave Theory Tech., vol. 38, pp.  881 -890, July  1990.
  5. E. Grotelüschen, L. S. Dutta and S. Zaage, "Full-wave analysis and analytical formulas for the line parameters of transmission lines on semiconductor substrates", Integration, the VLSI J., vol. 16, pp.  33-58, 1993.
  6. H. Grabinski, B. Konrad and P. Nordholz, "Simple formulas to calculate the line parameters of interconnects on conducting substrates", in Proc. IEEE 7th Topical Meeting Electrical Performance of Electronic Packaging (EPEP98), West Point, NY, Oct. 26-28 1998, pp.  223-226. 
  7. J.-K. Wee, Y.-J. Park, H.-S. Min, D.-H. Cho, M.-H. Seung and H.-S. Park, "Modeling the substrate effect in interconnect line characteristics of high speed VLSI circuits", IEEE Trans. Microwave Theory Tech., vol. 46, pp.  1436-1443, Oct.  1998.
  8. D. F. Williams, "Metal-insulator-semiconductor transmission lines", IEEE Trans. Microwave Theory Tech., vol. 47, pp.  176-181, Feb.  1999.
  9. S. L. Manney, M. S. Nakhla and Q. J. Zhang, "Analysis of nonuniform, frequency-dependent high-speed interconnects using numerical inversion of Laplace transform", IEEE Trans. Computer-Aided Design, vol. 13, pp.  1513 -1525, Dec.  1994.
  10. M. Celik and A. C. Cangellaris, "Simulation of dispersive multiconductor transmission lines by Padé approximation via the Lanczos process", IEEE Trans. Microwave Theory Tech., vol. 44, pp.  2525 -2535, Dec.  1996.
  11. EE's of EDA Palo Alto, CA:
  12. A. Tripathi, Y. C. Hahm, A. Weisshaar and V. K. Tripathi, "A quasi-TEM spectral domain approach for calculating distributed inductance and resistance of microstrip on Si-SiO 2 substrate", Electron. Lett., vol. 34, no.  13, pp.  1330-1331, June  1998.
  13. M. Horno, F. L. Mesa, F. Medina and R. Marques, "Quasi-TEM analysis of multilayered, multiconductor coplanar structures with dielectric and magnetic anisotropy including substrate losses", IEEE Trans. Microwave Theory Tech., vol. 38, pp.  1059-1068, Mar.  1990.
  14. J.-T. Kuo, "Accurate quasi-TEM spectral domain analysis of single and multiple coupled microstrip lines of arbitrary metallization thickness", IEEE Trans. Microwave Theory Tech., vol. 43, pp.  1881-1888, Aug.  1995.
  15. J. Zheng, A. Tripathi, Y. C. Hahm, Y. Ishii, A. Weisshaar and V. K. Tripathi, "CAD-oriented equivalent circuit modeling of on-chip interconnects in CMOS technology", in Proc. IEEE 7th Topical Meeting Electrical Performance of Electronic Packaging (EPEP'98), West Point, NY, Oct. 26-28 1998, pp.  227-230. 
  16. J. Zheng, Y.-C. Hahm, A. Weisshaar and V. K. Tripathi, "Equivalent circuit modeling of single and coupled on-chip interconnects on lossy silicon substrate", in Proc. IEEE 8th Topical Meeting Electrical Performance of Electronic Packaging (EPEP'99), San Diego, CA, Oct. 25-27 1999, pp.  185-188. 
  17. H. A. Wheeler, "Formulas for the skin effect", Proc. IRE , vol. 30, pp.  412-424, Sept.  1942.
  18. P. Silvester, "Modal network theory of skin effect in flat conductors", Proc. IEEE, vol. 54, pp.  1147 -1151, Sept.  1966.
  19. A. Deutsch, et al. "Frequency-dependent crosstalk simulation for on-chip interconnections", IEEE Trans. Advanced Packaging, vol. 22, Aug.  1999.
  20. D. B. Kuznetsov and J. E. Schutt-Ainé, "Optimal transient simulation of transmission lines", IEEE Trans. Circuits Syst. I, vol. 43, pp.  111-121, Feb.  1996.
  21. M. Silveira, I. Elfadel, J. White, M. Chilukuri and K. Kenneth, "Efficient frequency domain modeling and circuit simulation of transmission lines", IEEE Trans. Comp., Hybrids, Manuf. Technol. , vol. 17, pp.  505-513, Nov.  1994.
  22. E. C. Levy, "Complex-curve fitting", IRE Trans. Automat. Contr., vol. AC-4, pp.  37-43, May  1959.
  23. T. Dhaene and D. D. Zutter, "Selection of lumped element models for coupled lossy transmission lines", IEEE Trans. Computer Aided Design, vol. 11, pp.  805-815,  July  1992.
  24. K. D. Marx, "Propagation modes, equivalent circuits and characteristic terminations for multiconductor transmission lines with inhomogeneous dielectrics", IEEE Trans. Microwave Theory Tech., vol. MTT-21, pp.  450-457, July  1973.
  25. V. K. Tripathi and J. B. Rettig, "A SPICE model for multiple coupled microstrips and other transmission lines", IEEE Trans. Microwave Theory Tech., vol. 33, pp.  1513-1518, Dec.  1985.
  26. V. K. Tripathi and A. Hill, "Equivalent circuit modeling of losses and dispersion in single and coupled lines for microwave and millimeter wave integrated circuits", IEEE Trans. Microwave Theory Tech., vol. 36, pp.  256-262, Feb.  1988.
  27. V. K. Tripathi, "Asymmetric coupled transmission lines in an inhomogeneous medium", IEEE Trans. Microwave Tehory Tech., vol. MTT-23, pp.  735-739, Sept.  1975.