2000 IEEE. Personal use of this material is permitted. However, permission to reprint/republish this material for advertising or promotional purposes or for creating new collective works for resale or redistribution to servers or lists, or to reuse any copyrighted component of this work in other works must be obtained from the IEEE.

IEEE Transactions on Microwave Theory and Techniques
Volume 48 Number 9, September 2000

Table of Contents for this issue

Complete paper in PDF format

Improved Global Rational Approximation Macromodeling Algorithm for Networks Characterized by Frequency-Sampled Data

Mark Elzinga, Kathleen L. Virga, Senior Member, IEEE and John L. Prince Fellow, IEEE

Page 1461.

Abstract:

Recently, the demand for high-performance wireless designs has been increasing while simultaneously the speed of high-end digital designs have crossed over the gigahertz range. New simulation tools which accurately characterize high-frequency interconnects are needed. This paper presents improvements to a new macromodeling algorithm described in [1]. The algorithm employs curve-fitting techniques to achieve a pole-residue approximation of the frequency-sampled network. The frequency sampled S-parameters or Y-parameters can be obtained from measurement or full-wave simulation to characterize the frequency-dependent interconnects behavior. The improvements extend the approach to lossless structures, increase its accuracy with pole-clustering, and ensure its validity with a passivity test. This paper addresses some of the special considerations that must be made to the method so it can efficiently and accurately be applied to lossless circuits and structures. The resulting algorithm is now capable of accurately extracting a wide-band frequency domain macromodel from frequency-sampled data for either LC circuit (lossless) or RLC circuits (lossy). The frequency-domain macromodel can be linked to a SPICE circuit simulator for mixed signal circuit analysis using RF, analog, and digital circuits. The circuit can be simulated in the time domain using recursive convolution.

References

  1. M. Elzinga, K. Virga, L. Zhao and J. L. Prince, "Pole-residue formulation for transient simulation of high-frequency interconnects using householder LS curve-fitting techniques", IEEE Trans. Adv. Packag., vol. 25, pp.  142-147, May  2000.
  2. L. T. Pillage and R. A. Rohrer, "Asymptotic waveform evaluation for timing analysis", IEEE Trans. Computer-Aided Des., vol. 14, pp.  639-649,  May  1990.
  3. P. Feldmann and R. W. Freund, "Efficient linear circuit analysis by Padé approximation via the Lanczos process", IEEE Trans. Computer-Aided Des., vol. 14, pp.  639-649, 1995.
  4. A. Odabasioglu, M. Celik and L. T. Pileggi, "PRIMA: Passive reduced-order interconnect macromodeling algorithm", IEEE Trans. Computer-Aided Des., vol. 17, pp.  645-653,  Aug.  1998.
  5. A. E. Ruehli and H. Heeb, "Circuit models for three-dimensional geometries including dielectrics", IEEE Trans. Microwave Theory Tech., vol. 40, pp.  1507-1516, July  1992.
  6. C. Ho, A. Ruehli and P. Brennan, "The modified nodal approach to network analysis", IEEE Trans. Circuits Syst., vol. CAS-22, pp.  504 -509, June  1975.
  7. R. Sanaie, E. Chiprout and M. S. Nakhla, "A fast method for frequency and time domain simulation of VLSI interconnects", IEEE Trans. Microwave Theory Tech., vol. 42, pp.  2562-2571, Dec.  1994.
  8. R. Achar and M. S. Nakhla, "Efficient transient simulation of embedded subnetworks characterized by s -parameters in the presence of nonlinear elements", IEEE Trans. Microwave Theory Tech., vol. 46, pp.  2356-2363, Dec.  1998.
  9. W. T. Beyene and J. E. Schutt-Aine, "Efficient transient simulation of high-speed interconnects characterized by sampled data", IEEE Trans. Comp., Packag. Manufact. Technol. B, vol. 21, pp.  105-114, Feb.  1998.
  10. L. M. Silveira, I. M. Elfadel, J. K. White, M. Chilukuri and K. S. Kundert, "Efficient frequency-domain modeling and circuit simulation of transmission lines", IEEE Trans. Comp., Packag. Manufact. Technol. B, vol. 17, pp.  505-513, Nov.  1994.
  11. E. C. Chang, "Transient simulation of lossy coupled transmission lines using iterative linear least squares fitting and piecewise recursive convolution", IEEE Trans. Circuits Syst. I, vol. 43, Nov.  1996.
  12. S. Lin and E. Kuh, "Transient simulation of lossy interconnects based on the recursive convolution formulation", IEEE Trans. Circuits Syst., vol. 39, pp.  879-892, Nov.  1992.
  13. M. Celik, "AZSPICE, Modified from Berkely SPICE 3F4", Ctr. Electron. Packag. Res., Univ. Ariz., Tucson, 1996.
  14. J. N. Brittingham, E. K. Miller and J. L. Willows, "Pole extraction from real-frequency information", Proc. IEEE, vol. 68, pp.  263-273, Feb.  1980.
  15. W. H. Kim and H. E. Meadows, Modern Network Analysis, New York: Wiley, 1971, p.  195. 
  16. H. W. Brinkmann and E. A. Klotz, Linear Algebra and Analytic Geometry, Reading, MA: Addison-Wesley, 1971, pp.  445-446. 
  17. N. Balabanian and T. A. Bickart, Linear Network Theory, Beaverton, OR: Matrix, 1981, p.  465. 
  18. EESOF Divison HP-ADS, Hewlett Packard, "Advanced Design System 1.0", Tech. Rep., 1998.
  19. L. Zhao, A. C. Cangellaris and J. L. Prince, Reduced-Order Modeling of Electromagnetic Systems,: Univ. Arizona, Ctr. Electron. Packag. Res. (CEPR) software manual, Oct. 1998.
  20. D. M. Pozar, Microwave Engineering, Reading, MA: Addison-Wesley, 1990.