2000 IEEE.
Personal use of this material is
permitted. However, permission to reprint/republish this
material for advertising or promotional purposes or for
creating new collective works for resale or redistribution
to servers or lists, or to reuse any copyrighted component
of this work in other works must be obtained from the
IEEE.
IEEE Transactions on Microwave Theory and Techniques
Volume 48 Number 9, September 2000
Table of Contents for this issue
Complete paper in PDF format
Laguerre-SVD Reduced-Order
Modeling
Luc Knockaert, Member, IEEE and Daniël De Zutter Senior Member, IEEE
Page 1469.
Abstract:
A reduced-order modeling method based on a system description
in terms of orthonormal Laguerre functions, together with a Krylov subspace
decomposition technique is presented. The link with Padé approximation,the block Arnoldi process and singular value decomposition (SVD) leads to
a simple and stable implementation of the algorithm. Novel features of the
approach include the determination of the Laguerre parameter as a function
of bandwidth and testing the accuracy of the results in terms of both amplitude
and phase.
References
-
L. T. Pillage and R. A. Rohrer, "Asymptotic waveform evaluation for timing analysis", IEEE Trans. Computer-Aided Design, vol. 9, pp. 352-366,
Apr. 1990.
-
P. Feldmann and R. W. Freund, "Efficient linear circuit analysis by Padé approximation via the Lanczos process", IEEE Trans. Computer-Aided
Design, vol. 14, pp. 639-649, May 1995.
-
J. I. Aliaga, D. L. Boley, R. W. Freund and V. Hernández, "A Lanczos-type
method for multiple starting vectors,"in Numer. Anal. Manuscript, Murray Hill, NJ: Bell Lab., Sept. 1998.
-
R. W. Freund and P. Feldmann, "The SyMPVL algorithm and its applications
to interconnect simulation,"in Numer. Anal. Manuscript, Murray Hill, NJ: Bell Labs., June 1997.
-
D. L. Boley, "Krylov space methods on state-space control models", Circuits Syst. Signal Processing, vol. 13, no. 6, pp.
733-758, 1994.
-
A. Odabasioglu, M. Celik and L. T. Pileggi, "PRIMA: Passive reduced-order interconnect macromodeling algorithm", IEEE Trans. Computer-Aided Design, vol. 17, pp. 645-654,
Aug. 1998.
-
A. Bultheel and M. Van Barel, "Padé techniques for model reduction in linear system theory: A survey", J. Comput. Appl. Math., vol. 14, pp. 401-438, 1986.
-
K. J. Kerns and A. T. Yang, "Preservation of passivity during RLC network reduction via split congruence transformations", IEEE Trans. Computer-Aided
Design, vol. 17, pp. 582-591, July 1998.
-
Z. Zang, A. Cantoni and K. L. Teo, "Continuous-time envelope-constrained filter design via Laguerre filters and H
optimization methods", IEEE Trans. Signal Processing, vol. 46, pp. 2601-2610, Oct. 1998.
-
G. H. Golub and C. F. Van Loan, Matrix Computations,
Baltimore, MD: Johns Hopkins, 1996.
-
A. E. Ruehli, "Equivalent circuit models for three-dimensional multiconductor systems", IEEE Trans. Microwave Theory Tech., vol. MTT-22, pp. 216-221, Mar. 1974.
-
L. Knockaert and D. De Zutter, "Laguerre-SVD reduced order modeling", in 8th Topical Meeting on Electrical Performance of Electronic Packaging EPEP'99 , San Diego, CA, Oct. 1999, pp. 249-252.
-
C.-W. Ho, A. E. Ruehli and P. A. Brennan, "The modified nodal approach to network analysis", IEEE Trans. Circuits Syst., vol. CAS-22, pp. 504
-509, June 1975.
-
J. Vlach and K. Singhal,
Computer Methods for Circuit Analysis and Design, New York: Van
Nostrand Reinholt, 1983.
-
R. A. Rohrer and H. Nosrati, "Passivity considerations in stability studies of numerical integration algorithms", IEEE Trans. Circuits Syst., vol. CAS-28, pp. 857-866, Sept. 1981.
-
G. Szegö, "Orthogonal polynomials", in Amer. Math. Soc. Coll. Publ., vol. 23, 1939 .
-
M. Schetzen, "Asymptotic optimum Laguerre series",
IEEE Trans. Circuit Theory, vol. CT-18, pp. 493-500, Sept.
1971.
-
L. Knockaert and D. De Zutter, "Passive reduced order multiport modeling: The Padé-Laguerre, Krylov-Arnoldi-SVD connection",
Arch. Elektron. Übertragungstech, vol. 53, no. 5, pp.
254-260, 1999.
-
G. Mandyam and N. Ahmed, "The discrete Laguerre transform: Derivation and applications", IEEE Trans. Signal Processing, vol. 44, pp. 2925-2931,
Dec. 1996.
-
W. Gautschi, "Algorithm 726: ORTHPOL-A package of routines for generating orthogonal polynomials and Gauss-type quadrature rules", ACM Trans. Math. Software, vol. 20, no. 1, pp. 21-62, Mar. 1994.
-
H. Dette and W. J. Studden, "Some new asymptotic properties for the zeros of Jacobi, Laguerre and Hermite polynomials", Constr. Approx., vol. 11, no.
2, pp. 227-238, 1995.
-
D. Slepian, "On bandwidth", Proc. IEEE, vol. 64, pp. 292-300,
Mar. 1976.
-
L. Knockaert, "Orthonormal Riemann filter systems", in Signal Processing Symposium SPS-2000, Hilvarenbeek, The Netherlands,Mar. 2000, p. 7.
-
C. Chen and D. F. Wong, "Error bounded Padé approximation via bilinear conformal transformation", in 36th Design Automation Conf. DAC'99, New Orleans, LA, June 1999,Also on http://www.sigda.acm.org/Archives/ProceedingArchives, pp. 7-12.
-
Y. Saad and M. H. Schultz, "GMRES: A generalized minimal residual algorithm for solving nonsymmetric linear systems", SIAM J. Sci. Stat. Comput., vol. 7, no. 3, pp. 856-869, July 1986.
-
W. H. Press, S. A. Teukolsky, W. T. Vetterling and B. P. Flannery, Numerical Recipes, Cambridge: U.K.: Cambridge
Univ. Press, 1992
.
-
A. R. Djordjević and T. K. Sarkar, "Analysis of time response of lossy multiconductor transmission line networks", IEEE Trans. Microwave Theory Tech., vol. MTT-35, pp.
898-908, Oct.
1987.