2000 IEEE. Personal use of this material is permitted. However, permission to reprint/republish this material for advertising or promotional purposes or for creating new collective works for resale or redistribution to servers or lists, or to reuse any copyrighted component of this work in other works must be obtained from the IEEE.

IEEE Transactions on Microwave Theory and Techniques
Volume 48 Number 9, September 2000

Table of Contents for this issue

Complete paper in PDF format

Experimentally Based Modeling of Field Sources for Three-Dimensional Computation of SAR in Electromagnetic Hyperthermia and Treatment Planning

Mikaya L. D. Lumöri Member, IEEE

Page 1522.

Abstract:

This paper presents field source-modeling, for applications to hyperthermia, by utilizing experimental data from the paraxial region of a liquid muscle-like phantom irradiated by an aperture antenna. The data are used in an optimization algorithm, applied to a Gaussian beam model (GBM),to determine the source parameters for GBM-computations of specific absorption rates everywhere, accurate to within 1% (relative to the global maximum) of the experimental results. This paper also shows how the aperture and incident fields may be determined accurately by the GBM and links them to the electric-field integral equation (EFIE), as an example, to improve the accuracy of numerical computations of the electric or magnetic fields associated with the EFIE,the magnetic-field integral equation, or any other field formulations. It is further demonstrated that models of plane waves, or approximate source fields, predict power levels with significant, unacceptable errors. Finally,it is concluded that the GBM is a viable tool for characterizing aperture antennas used in hyperthermia for cancer therapy.

References

  1. M. L. D. Lumori, J. B. Andersen, M. K. Gopal and T. C. Cetas, "Gaussian beam representation of aperture fields in layered, lossy media: simulation and experiment", IEEE Trans. Microwave Theory Tech., vol. 38, pp.  1623-1630, Nov.  1990 .
  2. D. Livesay and K. M. Chen, "Electromagnetic fields induced inside arbitrarily shaped biological bodies", IEEE Trans. Microwave Theory Tech., vol. 22, pp.  1273-1280, 1974.
  3. I. V. Lindell, Methods for Electromagnetic Field Analysis, Oxford: U.K.: Clarendon, 1992.
  4. G. A. Lovisolo, M. Adami, G. Arcangelli, A. Borrani, G. Calamai, A. Cividalli and F. Mauro, "A multifrequency water-filled waveguide applicator: Thermal dosimetry in vivo", IEEE Trans. Microwave Theory Tech., vol. MTT-32, pp.  893-896, 1984.
  5. J. R. Wait, "Focused heating in cylindrical targets, I", IEEE Trans. Microwave Theory Tech., vol. MTT-33, pp.  647 -649, July  1985.
  6. J. R. Wait and M. L. D. Lumori, "Focused heating in cylindrical targets, II", IEEE Trans. Microwave Theory Tech., vol. MTT-34, pp.  357-359, Mar.  1986.
  7. J. R. Wait, "Analysis of the radiation leakage for a four-aperture phased array applicator in hyperthermia therapy", IEEE Trans. Microwave Theory Tech., vol. MTT-34, pp.  531-541, Mar.  1986.
  8. M. L. D. Lumori, J. R. Wait and T. C. Cetas, "Power deposition and focusing in a lossy cylinder by a concentric phased array", Radio Sci., vol. 24, pp.  433-442,  Apr.  1989.
  9. E. J. Gross, T. C. Cetas, P. R. Stauffer, R. L. Liu and M. L. D. Lumori, "Experimental assessment of phased-array heating of neck tumours", Int. J. Hyperthermia, vol. 6, pp.  453-474, Feb.  1990.
  10. M. L. D. Lumori, "Microwave power deposition in bounded and inhomogeneous lossy media", Ph.D. dissertation, Dept. Elect. Comput. Eng., Univ. Arizona, Tucson, AZ, May 1988.
  11. H. Kogelnik, "On the propagation of Gaussian beams of light through lenslike media including those with loss or gain variation", Appl. Opt., vol. 4, pp.  1562-1569, Dec.  1965.
  12. H. Kogelnik and T. Li, "Laser beams and resonators", Proc. IEEE, vol. 5, pp.  1550-1557, Oct.  1966.
  13. J. A. Arnaud and H. Kogelnik, "Gaussian light beams with general astigmatism", Appl. Opt., vol. 8, pp.  1687-1693, Aug.  1969.
  14. G. A. Deschamps, "Gaussian beam as a bundle of complex rays", Electron. Lett., vol. 7, no. 23, pp.  684-685, Nov.  1971.
  15. G. A Deschamps, "Ray techniques in electromagnetics", Proc. IEEE, vol. 60, pp.  1022-1035, Sept.  1975.
  16. A. Yariv, Quantum Electronics, New York, NY: Wiley, 1975.
  17. R. C. Weaver, W. Sache and L. Niu, "Transient ultrasonic waves in a viscoelastic plate: Application to materials characterization", J. Acoust. Soc. Amer. , vol. 85, pp.  2262-2267, 1989.
  18. L. B. Felsen, J. M. Klosner, I. T. Lu and Z. Grossfeld, "Source field modeling by self-consistent Gaussian beam superposition (two-dimensional", J. Acoust. Soc. Amer., vol. 89, pp.  63-72, 1991.
  19. D. Zhou, L. Peirlinckx, M. L. D. Lumori and L. Van Biesen, "Parametric modeling and estimation of ultrasonic fields using a system identification technique", J. Acoust. Soc. Am., vol. 99, no. 3, pp.  1438-1445, March  1996.
  20. J. B. Andersen, "Electromagnetic power deposition: Inhomogeneous media, applicators and phased arrays,"in Physics and Technology of Hyperthermia , S. B. Field, and C. Franconi, Eds. Dordrecht: The Netherlands: Martinus Nijhoff, 1987, pp.  159-188. 
  21. M. L. D. Lumori, J. W. Hand, M. K. Gopal and T. C. Cetas, "Use of Gaussian beam model in predicting SAR distributions from current sheet applicators", Phys. Med. Biol.,(U.K.), vol. 35, pp.  387-397, Mar.  1990.
  22. A. Grace, Optimization Toolbox User's Guide, Natick, MA: The Math Works, 1990.
  23. P. M. van den Berg, A. T. De Hoop, A. Segal and N. Praagman, "A computational model of the electromagnetic heating of biological tissue with application to hyperthermic cancer therapy", IEEE Trans. Biomed. Eng., vol. 30, pp.  797-805, Dec.  1983 .
  24. A. Stogryn, "Equations for calculating the dielectric constant of saline water", IEEE Trans. Microwave Theory Tech., vol. MTT-19, pp.  733-736, Aug.  1971.
  25. M. K. Gopal, J. W. Hand, M. L. D. Lumori, S. Alkhairi, K. D. Paulsen and T. C. Cetas, "Current sheet applicator arrays for superficial hyperthermia of chestwall lesions", Int. J. Hyperthermia, vol. 8, pp.  227-240, Feb.  1992.
  26. J. Bach Andersen, A. Baun, K. Harmark, L. Heinzi, P. Raskmark and J. Overgaard, "A hyperthermia system using a new type of inductive applicator", IEEE Trans. Biomed. Eng., vol. BME-31, pp.  21-27, 1984.
  27. R. H. Johnson, J. R. James, J. W. Hand, J. W. Hopewell, P. R. C. Dunlop and R. J. Dickinson, "New low-profile applicators for local heating of tissues", EEE Trans. Biomed. Eng., vol. BME-31, pp.  28-37, 1984.
  28. R. H. Johnson, A. W. Pierce, J. W. Hand and J. R. James, "A new type of lightweight low-frequency electromagnetic hyperthermia applicator", IEEE Trans. Microwave Theory Tech., vol. MTT-35, pp.  1317-1321, 1987.
  29. M. V. Prior, M. L. D. Lumori, J. W. Hand, G. Lamaitre, C. J. Schneider and J. D. P. van Dijk, "The use of a current sheet applicator array for superficial hyperthermia: Incoherent versus coherent operation", IEEE Trans. Biomed. Eng., vol. 42, pp.  694-698, July  1995 .
  30. J. W. Hand, J. W. Lagendijk, J. Bach Andersen and J. C. Bolomey, "Quality assurance guidelines for E.S.H.O. protocols", Int. J. Hyperthermia, vol. 5, pp.  421-428, 1989.
  31. P. J. M. Rietveld, M. L. D. Lumori, J. W. Hands, M. V. Prior, J. van der Zee and G. C. van Rhoon, "Effectiveness of the Gaussian beam model in predicting SAR distributions from the lucite cone applicator", Int. J. Hyperthermia, vol. 14, pp.  293-308, 1998.
  32. P. J. M. Rietveld, M. L. D. Lumori, J. van der Zee and G. C. van Rhoon, "Qualitative evaluation of 2× 2 arrays of lucite cone applicators in flat layered phantoms using Gaussian-beam-predicted and thermographically measured SAR distributions", Phys. Med. Biol. (U.K.), vol. 43, pp.  2207-2220, 1998.
  33. P. J. M. Rietveld, W. L. J. van Putten, J. van der Zee and G. C. van Rhoon, "Comparison of the clinical effectiveness of the 433 MHz lucite cone applicator with that of a conventional waveguide applicator in applications of superficial hyperthermia", Int. J. Radiation Oncology Biol. Phys., vol. 43, pp.  681-687, 1999.