2000 IEEE. Personal use of this material is permitted. However, permission to reprint/republish this material for advertising or promotional purposes or for creating new collective works for resale or redistribution to servers or lists, or to reuse any copyrighted component of this work in other works must be obtained from the IEEE.

IEEE Transactions on Microwave Theory and Techniques
Volume 48 Number 10, October 2000

Table of Contents for this issue

Complete paper in PDF format

Efficient Hybrid Spatial and Spectral Techniques in Analyzing Planar Periodic Structures with Nonuniform Discretizations

Yongxue Yu and Chi Hou Chan

Page 1623.

Abstract:

A new efficient technique for analyzing planar periodic structures with arbitrary unit cell geometry rendered in a nonuniform discretization is proposed in this paper. The mixed potential integral equation is solved by the method of moments in conjunction with the Rao-Wilton-Glisson triangular discretization. The convergence of computing each element in the impedance matrix is accelerated using Ewald's method for contributions of quasi-dynamic and complex images and the lattice-sum method for the surface-wave contribution. Numerical efficiency and accuracy of this hybrid method are compared with the spectral-domain method.

References

  1. R. A. Kipp and C. H. Chan, "A numerically efficient technique for the method of moments solution to planar periodic structures in a layered media", IEEE Trans. Microwave Theory Tech., vol. 42, pp.  635 -643, Apr.  1994.
  2. R. E. Jorgenson and R. Mittra, "Efficient calculation of the free-space periodic Green's function", IEEE Trans. Antennas Propagat., vol. 38, pp.  633-642,  May  1990.
  3. Y. L. Chow, J. J. Yang, D. G. Fang and G. E. Howard, "A closed-form spatial Green's function for the thick microstrip substrate", IEEE Trans., Microwave Theory Tech., vol. 39, pp.  588-593, Mar.  1991.
  4. K. E. Jordan, G. R. Richter and P. Sheng, "An efficient numerical evaluation of the Green's function for the Helmholtz operator on periodic structures", J. Comput. Phys., vol. 63, pp.  222-235, 1986.
  5. A. W. Mathis and A. F. Peterson, "Efficient electromagnetic analysis of a doubly infinite array of rectangular apertures", IEEE Trans. Microwave Theory Tech., vol. 46, pp.  46-54, Jan.  1998.
  6. S. K. Chin, N. A. Nicorovici and R. C. Mcphedran, "Green's function and lattice sums for electromagnetic scattering by a square array of cylinders", Phys. Rev. E, Stat. Phys. Plasmas Fluids Relat., vol. 49, no. 5, pp.  4590-4602, May  1994.
  7. Y. X. Yu and C. H. Chan, "On the extension of Ewald's method to periodic structures in layered media", Microwave Opt. Technol. Lett., vol. 19, no. 2, pp.  125-131, Oct.  1998.
  8. C. H. Chan and R. A. Kipp, "An improved implementation of triangular-domain basis functions for the analysis of microstrip interconnects", J. Electromag. Waves Applicat., vol. 8, no. 6, pp.  781-797, June   1994.