2000 IEEE. Personal use of this material is permitted. However, permission to reprint/republish this material for advertising or promotional purposes or for creating new collective works for resale or redistribution to servers or lists, or to reuse any copyrighted component of this work in other works must be obtained from the IEEE.

IEEE Transactions on Microwave Theory and Techniques
Volume 48 Number 10, October 2000

Table of Contents for this issue

Complete paper in PDF format

Three-Dimensional High-Frequency Distribution Networks-Part I: Optimization of CPW Discontinuities

Thomas M. Weller, Member, IEEE Rashaunda M. Henderson, Member, IEEE Katherine J. Herrick, Member, IEEE S. V. Robertson, R. T. Kihm and Linda P. B. Katehi Fellow, IEEE

Page 1635.

Abstract:

This paper describes a systematic study of coplanar waveguide discontinuities that are requisite components of high-frequency distribution networks. The specific geometries addressed are air bridges, right-angle bends,tee junctions, and Wilkinson dividers. Relative to typical monolithic-microwave integrated-circuit designs, the components studied herein are electrically large in order to minimize signal attenuation. The large size leads to pronounced parasitic effects, and the emphasis of this study was to optimize the electrical performance using simple compensation techniques. The optimization methods are developed using full-wave simulation and equivalent-circuit modeling,and are verified experimentally up to 60 GHz. Part II of this paper describes the implementation and packaging of the components to realize a three-dimensional W-band distribution network.

References

  1. R. M. Henderson, K. J. Herrick, T. M. Weller, S. V. Robertson, R. T. Kihm , and L. P. B. Katehi, "Three-dimensional high-frequency distribution networks-Part II: Packaging and integration", IEEE Trans. Microwave Theory Tech., vol. 48, pp. 1643-1651, Oct. 2000.
  2. N. Dib, et al. "Theoretical and experimental characterization of coplanar waveguide discontinuities for filter applications", IEEE Trans. Microwave Theory Tech., vol. 39, pp.  873-882, May  1991.
  3. N. H. L. Koster, S. Koblowski, R. Bertenburg, S. Heinen and I. Wolff, "Investigations on air bridges used for MMIC's in CPW technique", in Proc. European Microwave Conf., 1989, pp.  666-671. 
  4. M.-D. Wu, et al. "Full-wave characterization of the mode conversion in a coplanar waveguide right-angled bend", IEEE Trans. Microwave Theory Tech., vol. 43, pp.  2532-2538, Nov.  1995.
  5. R. Bromme and R. Jansen, "Systematic investigation of coplanar waveguide MIC/MMIC structures using a unified strip/slot 3D electromagnetic simulator", in IEEE MTT-S Int. Microwave Symp. Dig., 1991, pp.  1081-1084. 
  6. A. Omar, et al. "Effects of air-bridges and mitering on coplanar waveguide 90° bends: Theory and experiment", in IEEE MTT-S Int. Microwave Symp. Dig., 1993, pp.  823-826. 
  7. P. M. Weston and K. C. Gupta, "EM-ANN modeling and optimal chamfering of 90° CPW bends with air-bridges", in IEEE MTT-S Int. Microwave Symp. Dig., 1996, pp.  1603-1606. 
  8. M. Rittweger, et al. "Full-wave analysis of a modified coplanar air-bridge T-junction", in Proc. European Microwave Conf., 1990, pp.  993-998. 
  9. T. Becks and I. Wolff, "Full-wave analysis of various coplanar bends and T-junctions with respect to different types of air-bridges", in IEEE MTT-S Int. Microwave Symp. Dig., 1993, pp.  697-700. 
  10. E. Lan, et al. "Wide-band CAD model for coplanar waveguide using FDTD technique", in IEEE MTT-S Int. Microwave Symp. Dig., 1997, pp.  1583-1586. 
  11. R. Esfandiari, D. Maki and M. Siracusa, "Design of interdigitated capacitors and their application to gallium arsenide monolithic filters", IEEE Trans. Microwave Theory Tech., vol. MTT-31, pp.  57-64, Jan.  1983.
  12. D. Mirshekar-Syahkal, "Computation of equivalent circuits of CPW discontinuities using quasi-static spectral domain method", IEEE Trans. Microwave Theory Tech., vol. 44, pp.  979-984, June  1996 .
  13. M. Naghed and I. Wolff, "Equivalent capacitances of coplanar waveguide discontinuities and interdigitated capacitors using a three-dimensional finite difference method", IEEE Trans. Microwave Theory Tech., vol. 38, pp.  1808-1815, Dec.  1990.
  14. P. Pogatzki, et al. "A comprehensive evaluation of quasistatic 3D-FD calculations for more than 14 CPW structures-Lines, discontinuities and lumped elements", in IEEE MTT-S Int. Microwave Symp. Dig., 1994, pp.  1289-1292. 
  15. R. B. Marks, "A multiline method of network analyzer calibration", IEEE Trans. Microwave Theory Tech., vol. 39, pp.  1205-1215, July  1991.
  16. L. Wiemer and R. H. Jansen, "Determination of coupling capacitance of underpasses, air bridges and crossings in MIC's and MMIC's", Electron. Lett., vol. 23, no.  7, pp.  343-345, Mar.  1987.
  17. R. Simons and G. Ponchak, "Modeling of some coplanar waveguide discontinuities", IEEE Trans. Microwave Theory Tech., vol. 36, pp.  1796-1803, Dec.  1988.
  18. M. Naghed, et al. "A new method for the calculation of the equivalent inductances of coplanar waveguide discontinuities", in IEEE MTT-S Int. Microwave Symp. Dig., 1991, pp.  747-750. 
  19. L. Fan and K. Chang, "Uniplanar power dividers using coupled CPW and asymmetrical CPS for MIC's and MMIC's", IEEE Trans. Microwave Theory Tech., vol. 44, pp.  2411-2419, Dec.  1996.
  20. D. Kother, B. Hopf, T. Sporkmann and I. Wolff, "MMIC Wilkinson couplers for frequencies up to 110 GHz", in IEEE MTT-S Int. Microwave Symp. Dig., 1995, pp.  663-666. 
  21. M. Schlechtweg, et al. "110 GHz amplifiers based on compact coplanar W -band receiver technology", in GAAS IC Symp. Dig., 1995, pp.  214- 217. 
  22. T. Weller, et al. "Optimization of MM-wave distribution networks using silicon-based CPW", in IEEE MTT-S Int. Microwave Symp. Dig. , vol. 2, 1998, pp.  537-540.