2000 IEEE. Personal use of this material is permitted. However, permission to reprint/republish this material for advertising or promotional purposes or for creating new collective works for resale or redistribution to servers or lists, or to reuse any copyrighted component of this work in other works must be obtained from the IEEE.

IEEE Transactions on Microwave Theory and Techniques
Volume 48 Number 10, October 2000

Table of Contents for this issue

Complete paper in PDF format

Accuracy of the Method of Moments for Scattering by a Cylinder

Karl F. Warnick and Weng Cho Chew Fellow, IEEE

Page 1652.

Abstract:

We study the accuracy and convergence of the method of moments for numerical scattering computations for an important benchmark geometry:the infinite circular cylinder. From the spectral decomposition of the electric-field integral equation for this scatterer, we determine the condition number of the moment matrix and the dependence of solution error on the choice of basis functions, discretization density, polarization of the incident field, and the numerical quadrature rule used to evaluate moment-matrix elements. The analysis is carried out for both the TM polarization (weakly singular kernel) and TE polarization (hypersingular kernel). These results provide insights into empirical observations of the convergence behavior of numerical methods in computational electromagnetics.

References

  1. C. C. Lu and W. C. Chew, "A multilevel algorithm for solving a boundary integral equation of scattering", Microwave Opt. Tech. Lett., vol. 7, pp.  466-470, July  1994.
  2. L. Demkowicz, "Asymptotic convergence in finite and boundary element methods: Part 1: Theoretical results", Comput. Math. Applicat., vol. 27, no. 12, pp.  69-84, 1994.
  3. H. Holm and E. P. Stephan, "A boundary element method for electromagnetic transmission problems", Appl. Anal., vol. 56, pp.  213 -226, 1995.
  4. H. Holm, M. Maischak and E. P. Stephan, "The hp -version of the boundary element method for Helmholtz screen problems", Computing , vol. 57, pp.  105-134, 1996.
  5. M. Costabel and E. P. Stephan, "A direct boundary integral equation method for transmission problems", J. Math. Anal. Appl., vol. 106, pp.  367-413, 1985.
  6. E. P. Stephan and T. Tran, "Domain decomposition algorithms for indefinite hypersingular integral equations: The h and p versions", SIAM J. Sci. Comput., vol. 19, pp.  1139-1153, July  1998.
  7. E. P. Stephan and W. L. Wendland, "A hypersingular boundary integral method for two-dimensional screen and crack problems", Arch. Ration. Mech. Anal., vol. 112, pp.  363-390, 1990.
  8. E. F. Kuester, "Computable error bounds for variational functionals of solutions of a convolution integral equations of the first kind", Wave Motion, vol. 22, pp.  171-185, 1995.
  9. M. Feistauer, G. C. Hsiao and R. E. Kleinman, "Asymptotic and a posteriori error estimates for boundary element solutions of hypersingular integral equations", SIAM J. Numer. Anal., vol. 33, pp.  666-685, Apr.  1996 .
  10. G. C. Hsiao and R. E. Kleinman, "Feasible error estimates in boundary element methods,"in Boundary Element Technology VII, CA Brebbia, and M. S. Ingber, Eds. Southampton: Comput. Mech., 1991, pp.  875-886. 
  11. M. Maischak, P. Mund and E. P. Stephan, "Adaptive multilevel BEM for acoustic scattering", Univ. Hannover, Hannover, Germany, Tech. Rep. IFAM26, Mar. 1997.
  12. S. Amini and N. D. Maines, "Preconditioned Krylov subspace methods for boundary element solution of the Helmholtz equation", Int. J. Numer. Methods Eng., vol. 41, pp.  875-898, 1998.
  13. K. F. Warnick and W. C. Chew, "Accuracy and conditioning of the method of moments for the 2D EFIE", 15th Annu. Rev. Progress Appl. Comput. Electromag., pp.  198-204, Mar.  15-20,  1999.
  14. K. F. Warnick and W. C. Chew, "On the spectrum of the electric field integral equation and the convergence of the moment method", Univ. Illinois at Urbana Campaign, Urbana, IL, Tech. Rep. CCEM-24-99, 1999.
  15. A. G. Dallas, G. C. Hsiao and R. E. Kleinman, "Observations on the numerical stability of the Galerkin method", Adv. Comput. Math., vol. 9, pp.  37-67, 1998.
  16. A. G. Ramm, "Eigenfunction expansion of a discrete spectrum in diffraction problems", Radiotekh. Elektron., vol. 18, pp.  364-369, 1973.
  17. I. S. Gradshteyn and I. M. Ryzhik, Table of Integrals, Series, and Products, 5th ed.   New York: Academic, 1994.
  18. S. Wandzura, "Accuracy in computation of matrix elements of singular kernels", in 11th Annu. Rev. Progress Appl. Comput. Electromag., vol. II, Monterey, CA, Mar. 20-25 1995, pp.  1170-1176. 
  19. J. J. Bowman, T. B. A. Senior and P. L. E. Uslenghi, Electromagnetic and Acoustic Scattering by Simple Shapes, New York: Hemisphere, 1987.