2000 IEEE. Personal use of this material is permitted. However, permission to reprint/republish this material for advertising or promotional purposes or for creating new collective works for resale or redistribution to servers or lists, or to reuse any copyrighted component of this work in other works must be obtained from the IEEE.

IEEE Transactions on Microwave Theory and Techniques
Volume 48 Number 10, October 2000

Table of Contents for this issue

Complete paper in PDF format

Unified Analytical Expressions for Transimpedance and Equivalent Input Noise Current of Optical Receivers

Andreas Leven, Student Member, IEEE Ralf Reuter and Yves Baeyens Member, IEEE

Page 1701.

Abstract:

Unified analytical expressions are derived for calculating the equivalent input noise current and transimpedance of optical receiver front ends with arbitrary input matching network topologies. To be independent of any transistor or amplifier type, noise parameters are used to describe the noise behavior of the active device. A new characteristic frequency-dependent value, called photodiode intrinsic conductance, is introduced. This figure-of-merit allows to compare the achievable equivalent input noise current and transimpedance of different types of photodiodes independently of amplifier type and geometry.

References

  1. T. E. Darcie, B. L. Kaspar, J. R. Talman and C. A. Burrus, Jr, "Resonant p-i-n-FET receivers for lightwave subcarrier systems", J. Lightwave Technol., vol. 6, pp.  582-589, Apr.  1988.
  2. J. L. Gimlett, "Low-noise 8 GHz PIN/FET optical receiver", Electron. Lett., vol. 23, pp.  281-283, 1987.
  3. J. X. Kan, I. Garrett and G. Jacobsen, "Transformer-tuned front-ends for heterodyne optical receivers", Electron. Lett., vol. 23, pp.  785-786, 1987.
  4. K. Ogawa, "Noise caused by GaAs MESFET's in optical receivers", Bell Syst. Tech. J., vol. 60, pp.  923-928, 1981.
  5. K. E. Alameh and R. A. Minasian, "Tuned optical receivers for microwave subcarrier multiplexed lightwave systems", IEEE Trans. Microwave Theory Tech., vol. 38, pp.  546-551, May  1990.
  6. M. Schneider, "Reduction of spectral noise density in p-i-n-HEMT lightwave receivers", J. Lightwave Technol., vol. 9, pp.  887-892, July.  1991.
  7. M. Høgdal, "New, simple method for simulating optical front end receivers", Electron. Lett., vol. 29, pp.  187-188, 1993.
  8. R. Reuter and F. J. Tegude, "New analytical and scalable noise model for HFET", in Proc. IEEE MTT-S Int. Microwave Symp. Dig., Baltimore, MD, 1998, pp.  137-140. 
  9. H. Rothe and W. Dahlke, "Theory of noisy four-poles", Proc. IRE , vol. 44, pp.  811-818, June  1956.
  10. H. Hillbrand and P. H. Russer, "An efficient method for computer aided noise analysis of linear amplifier networks", IEEE Trans. Circuit Syst., vol. CAS-23, pp.  235-238, Apr.  1976.
  11. M. W. Medley, Microwave and RF Circuits: Analysis, Synthesis and Design, Norwood, MA: Artech House, 1992.
  12. M. S. Park and R. A. Minasian, "Ultra-low-noise and wide-band-tuned optical receiver synthesis and design", J. Lightwave Technol, vol. 12, pp.  254-259, Feb.  1994.
  13. T. T. Ha, Solid-State Amplifier Design, New York: Wiley, 1991.
  14. P. D. Hale, D. A. Humphreys and A. D. Gifford, "Photodetector frequency response measurements at NIST, US and NPL, UK: Preliminary results of a standards laboratory comparison", Proc. SPIE-Int. Soc. Opt. Eng., vol. 2149, pp.  345-356,  1994.
  15. J. E. Bowers and C. A. Burrus, "Ultrawide-band long-wavelength p-i-n photodetectors", J. Lightwave Technol., vol. LT-5, pp.  1339-1350, Oct.  1987 .