2000 IEEE. Personal use of this material is permitted. However, permission to reprint/republish this material for advertising or promotional purposes or for creating new collective works for resale or redistribution to servers or lists, or to reuse any copyrighted component of this work in other works must be obtained from the IEEE.

IEEE Transactions on Microwave Theory and Techniques
Volume 48 Number 10, October 2000

Table of Contents for this issue

Complete paper in PDF format

Extending Scattering-Parameter Approach to Characterization of Linear Time-Varying Microwave Devices

Kenton Green, Member, IEEE and Roman Sobolewski Member, IEEE

Page 1725.

Abstract:

In this paper, we apply the theory of linear time-varying differential systems of equations to defining an extension of the standard scattering parameters. This extended parameter S~ (,t) is a function of both time and frequency. With this definition, we can accurately characterize rapidly time-and frequency-varying linear lumped causal microwave devices, in particular, photoconductive microwave switches. We discuss the similarities between S~ (,t) and the standard S-parameter approach and describe a measurement technique. We also derive some important properties of the S~ (,t)-parameters and describe conditions under which microwave devices such as photoconductive switches can be analyzed by this technique. To demonstrate the usefulness of S~ (,t), we derive the complete transfer function of the time-varying lumped-element model of a photoconductive switch. We also show the limitations of conventional time-invariant assumptions (based on windowing or apodization) to accurately model linear time-varying devices.

References

  1. R. Achar and M. S. Nakhla, "Efficient transient simulation of embedded subnetworks characterized by S -parameters in the presence of nonlinear elements", IEEE Trans. Microwave Theory Tech., vol. MTT-46, pp.  2356-2363, Dec.  1998.
  2. C. W. Hsue and C. D. Hechtman, "Transient responses of an exponential transmission line and its applications to high-speed backdriving in in-circuit test", IEEE Trans. Microwave Theory Tech., vol. 42, pp.  458 -462, Mar.  1994.
  3. L. A. Hayden and V. K. Tripathi, "Nonuniformly coupled microstrip transversal filters for analog signal-processing", IEEE Trans. Microwave Theory Tech., vol.  39, pp.  47-53, Jan.  1991.
  4. A. H. Mohammadian and C. T. Tai, "A general method of transient analysis for lossless transmission lines and its analytical solution to time-varying resistive terminations", IEEE Trans. Antennas Propagat., vol. AP-32, pp.  309-312, Mar.  1984.
  5. A. R. Djordjevic, T. K. Sarkar and R. F. Harrington, "Analysis of lossy transmission-lines with arbitrary nonlinear terminal networks", IEEE Trans. Microwave Theory Tech., vol. MTT-34, pp.  660-666, June  1986.
  6. J. E. Schutt-Aine and R. Mittra, "Scattering parameter transient analysis of transmission lines loaded with nonlinear terminations", IEEE Trans. Microwave Theory Tech., vol. 36, pp.  529-536, Mar.  1988 .
  7. J. E. Schutt-Aine, "Transient analysis of nonuniform transmission lines", IEEE Trans. Circuits Syst. I, vol. 39, pp.  378 -385, May  1992.
  8. T. Dhaene, L. Martens and D. Dezutter, "Transient simulation of arbitrary nonuniform interconnection structures characterized by scattering parameters", IEEE Trans. Circuits Syst. I, vol. 39, pp.  928-937, Nov.  1992 .
  9. K. S. Oh and J. E. Schutt-Aine, "Transient analysis of coupled, tapered transmission lines with arbitrary nonlinear terminations", IEEE Trans. Microwave Theory Tech., vol. 41, pp.  268-273, Feb.  1993 .
  10. B. Boyer, J. Haidar, A. Vilcot and M. Bouthinon, "Tunable microwave load based on biased photoinduced plasma in silicon", IEEE Trans. Microwave Theory Tech., vol. 45, pp.  1362-1367, Aug.  1997.
  11. S. E. Saddow and C. H. Lee, "Optical control of microwave integrated circuits using high-speed GaAs and Si photoconductive switches", IEEE Trans. Microwave Theory Tech., vol. 43, pp.  2414-2420, Sept.  1995.
  12. A. A. A. De Salles, "Optical control of GaAs MESFET's", IEEE Trans. Microwave Theory Tech., vol. MTT-31, pp.  812-820, Oct.  1983.
  13. J. L. Gautier, D. Pasquet and P. Pouvil, "Optical effects on the static and dynamic characteristics of a GaAs MESFET", IEEE Trans. Microwave Theory Tech., vol. MTT-33, pp.  819-822, Sept.  1985.
  14. I. L. Andersson and S. T. Eng, "Phase and amplitude characteristics of InP:Fe modified interdigitated gap photoconductive microwave switches", IEEE Trans. Microwave Theory Tech., vol. 37, pp.  729 -733, Apr.  1989.
  15. L. E. M. de Barros, Jr., A. Paolella, M. Y. Frankel, M. A. Romero, P. R. Herczfeld and A. Madjar, "Photoresponse of microwave transistors to high-frequency modulated lightwave carrier signal", IEEE Trans. Microwave Theory Tech., vol. 45, pp.  1368-1374, Aug.  1997.
  16. G. W. Wornell, "Emerging applications of multirate signal processing and wavelets in digital communications", Proc. IEEE, vol. 84, pp.  586-603, Apr.  1996.
  17. B.-S. Chen, Y.-C. Chung and D.-F. Huang, "Optimal time-frequency deconvolution filter design for nonstationary signal transmission through a fading channel: AF filter bank approach", IEEE Trans. Signal Processing, vol. 46, pp.  3220-3224,  Dec.  1998.
  18. H.-N. Lee and G. J. Pottie, "Fast adaptive equalization/diversity combining for time-varying dispersive channels", IEEE Trans. Commun., vol. 46, pp.  1146-1162, Sept.  1998.
  19. L. M. Silverman, "Realization of linear dynamical systems", IEEE Trans. Automat. Contr., vol. AC-16, pp.  554 -567, June  1971.
  20. G. H. Owyang, Foundations for Microwave Circuits, Berlin: Germany: Springer-Verlag, 1989.
  21. H. D'Angelo, Linear Time-Varying Systems: Analysis and Synthesis, Boston, MA: Allyn & Bacon, 1970.
  22. B. Boashash, "Estimating and interpreting the instantaneous frequency of a signal I: Fundamentals", Proc. IEEE, vol. 80, pp.  520-538,  Apr.  1992.
  23. H. N. Kritikos and J. G. Teti, "A time-frequency analysis method for radar scattering", IEEE Trans. Microwave Theory Tech., vol. 46, pp.  257-260, Mar.  1998.
  24. S. R. Kunasani and C. Nguyenj, "Distortion of pulsed signals in microstrip transmission lines using short-time Fourier transform", IEEE Microwave Guided Wave Lett., vol. 6, pp.  1-3, Jan.  1996.
  25. H. Ling, J. Moore, D. Bouche and V. Saavedra, "Time-frequency analysis of backscattered data from a coated strip with a gap", IEEE Trans. Antennas Propagat., vol. 41, pp.  1147-1150, Aug.  1993.
  26. W. Kaplan, Operational Methods for Linear Systems, Reading, MA: Addison-Wesley, 1962.