2000 IEEE. Personal use of this material is permitted. However, permission to reprint/republish this material for advertising or promotional purposes or for creating new collective works for resale or redistribution to servers or lists, or to reuse any copyrighted component of this work in other works must be obtained from the IEEE.

IEEE Transactions on Microwave Theory and Techniques
Volume 48 Number 10, October 2000

Table of Contents for this issue

Complete paper in PDF format

An Efficient CAD-Oriented Large-Signal MOSFET Model

Andrey V. Grebennikov, Member, IEEE and Fujiang Lin Senior Member, IEEE

Page 1732.

Abstract:

An efficient computer-aided-design-oriented large-signal microwave model for silicon MOSFETs is presented based on the well-founded small-signal equivalent circuit including self-heating effect and charge conservation condition. The proposed new single continuously differentiable empirical equations for drain current and gate capacitance are simple and quite accurate. The model parameters in the equations are constructed in such a way that they can be easily and straightforwardly extracted from measured data. Temperature effect is predicted by simply adopting the linear temperature-dependent model parameters for threshold voltage, saturation current, capacitance, and series resistances. The presented model is a good compromise between the simplicity of numerical calculations and the accuracy of final results that is desired by circuit designers in nonlinear circuit simulation.

References

  1. N. Camilleri, J. Costa, D. Lovelace and D. Ngo, "Silicon MOSFET's, the microwave technology for the '90s", in IEEE MTT-S Int. Microwave Symp. Dig., 1993, pp.  545-548. 
  2. A. Wood, C. Dragon and W. Burger, "A silicon MOS process for integrated power amplifiers", in Proc. IEEE Microwave Millimeter Wave Monolithic Circuits Symp. Dig. , 1996, pp.  189-192. 
  3. G. Ma, W. Burger, C. Dragon and T. Gillenwater, "High efficiency LDMOS power FET for low voltage wireless communications", in IEDM Tech. Dig., 1996, pp.  91-94. 
  4. A. Wood, W. Brakensiek, C. Dragon and W. Burger, "120 Watt, 2 GHz, Si LDMOS RF power transistor for PCS base station applications", in IEEE MTT-S Int. Microwave Symp. Dig. , 1998, pp.  707-710. 
  5. I. Yoshida, M. Katsueda, Y. Maruyama and I. Kohjiro, "A highly efficient 1.9 GHz Si high-power MOS amplifier", IEEE Trans. Electron Devices, vol. 45, pp.  953-956,  Apr.  1998.
  6. Y. P. Tsividis and K. Suyama, "MOSFET modeling for analog circuit CAD: Problems and prospects", IEEE J. Solid-State Circuits, vol. 29, pp.  210-216,  Mar.  1994.
  7. Y. C. Chen, D. L. Ingram, H. C. Yen, R. Lai and D. C. Streit, "A new empirical I -V model for HEMT devices", IEEE Microwave Guided Wave Lett., vol. 8, pp.  342-344, Oct.  1998.
  8. Y. P. Tsividis, Operation and Modeling of the MOS Transistor, New York: McGraw-Hill, 1987.
  9. E. Abou-Allam and T. Manku, "A small-signal MOSFET model for radio frequency IC applications", IEEE Trans. Computer-Aided Design, vol. 16, pp.  437-447,  May  1997.
  10. J. A. Garcia, A. Mediavilla, J. C. Pedro, N. B. Carvalho, A. Tazon and J. L. Garcia, "Characterizing the gate to source nonlinear capacitor role on FET IMD performance", in IEEE MTT-S Int. Microwave Symp. Dig., 1998, pp.  1635-1637. 
  11. J. M. Collantes, J. J. Raoux, J. P. Villote, R. Quere, G. Montoriol and F. Dupis, "A new large-signal model based on pulse measurement technique for RF power MOSFET", in IEEE MTT-S Int. Microwave Symp. Dig., 1995, pp.  1553-1556. 
  12. G. Massobrio and P. Antognetti, Semiconductor Device Modeling with SPICE, New York: McGraw-Hill, 1993.
  13. P. Perugupalli, M. Trivedi, K. Shenai and S. K. Leong, "Modeling and characterization of an 80 V silicon LDMOSFET for emerging RFIC applications", IEEE Trans. Electron Devices, vol. 45, pp.  1468-1478, July  1998.
  14. D. Moncoqut, D. France, P. Rossel, G. Charitat, H. Tranduc, J. Victory and I Pages, "LDMOS transistor for smart power circuits: Modeling and design", in Proc. IEEE Bipolar/BiCMOS Circuits Technol. Meeting , 1996, pp.  216-219. 
  15. M. Bucher, C. Lallement and C. C. Enz, "An efficient parameter extraction methodology for the EKV MOST model", in Proc. IEEE Int. Microelectron. Test Structures Conf. , 1996, pp.  145-150. 
  16. I. Angelov, H. Zirath and N. Rorsman, "A new empirical nonlinear mode for HEMT and MESFET devices", IEEE Trans. Microwave Theory Tech., vol. 40, pp.  2258-2266, Dec.  1992.
  17. T. Taki, "Approximation of junction field-effect transistor characteristics by a hyperbolic function", IEEE J. Solid-State Circuits, vol. SSC-13, pp.  724-726, Oct.  1978.
  18. T. Kacprzak and A. Materka, "Compact dc model of GaAs FET's for large-signal computer calculation", IEEE J. Solid-State Circuits, vol. SSC-18, pp.  211-213,  Apr.  1983.
  19. Y. Chan, C. Huang, C. Weng and B. Liew, "Characteristics of deep-submicrometer MOSFET and its empirical nonlinear RF model", IEEE Trans. Microwave Theory Tech., vol. 46, pp.  611-615, May  1998.
  20. C. E. Biber, M. L. Schmatz, T. Morf, U. Lott and W. Bachtold, "A nonlinear microwave MOSFET model for SPICE simulators", IEEE Trans. Microwave Theory Tech., vol. 46, pp.  604-610, May  1998.
  21. R. Sung, P. Bendix and M. B. Das, "Extraction of high-frequency equivalent circuit parameters of submicron gate-length MOSFET's", IEEE Trans. Electron Devices, vol. 45, pp.  1769-1775, Aug.  1998.
  22. B. J. Cheu and P. K. Ko, "Measurement and modeling of short-channel MOS transistor gate capacitances", IEEE J. Solid-State Circuits, vol. SC-22, pp.  464-472, June  1987.
  23. M. C. Ho, K. Green, R. Culbertson, J. Y. Yang, D. Ladwig and P. Ehnis, "A physical large signal Si MOSFET model for RF circuit design", in IEEE MTT-S Int. Microwave Symp. Dig. , 1997, pp.  391-394. 
  24. R. E. Anholt and S. E. Swirhun, "Experimental investigations of the temperature dependence of GaAs FET equivalent circuits", IEEE Trans. Electron Devices, vol. 39, pp.  2029-2036, Sept.  1992.
  25. W. R. Curtice, J. A. Pla, D. Bridges, T. Liang and E. E. Shumate, "A new dynamic electro-thermal nonlinear model for silicon RF LDMOS FETs", in IEEE MTT-S Int. Microwave Symp. Dig. , 1999, pp.  419-422.