2000 IEEE.
Personal use of this material is
permitted. However, permission to reprint/republish this
material for advertising or promotional purposes or for
creating new collective works for resale or redistribution
to servers or lists, or to reuse any copyrighted component
of this work in other works must be obtained from the
IEEE.
IEEE Transactions on Microwave Theory and Techniques
Volume 48 Number 11, November 2000
Table of Contents for this issue
Complete paper in PDF format
A Clinical Prototype for Active
Microwave Imaging of the Breast
Paul M. Meaney, Member, IEEE Margaret W. Fanning, Dun Li, Steven P. Poplack and Keith D. Paulsen Member, IEEE
Page 1841.
Abstract:
Despite its recognized value in detecting and characterizing
breast disease, X-ray mammography has important limitations that motivate
the quest for alternatives to augment the diagnostic tools that are currently
available to the radiologist. The rationale for pursuing electromagnetic methods
is strong given: the data in the literature, which show that the electromagnetic
properties of breast malignancy are significantly different than normal in
the high megahertz to low gigahertz spectral range, microwave illumination
can effectively penetrate the breast at these frequencies, and the breast
is a small readily accessible tissue volume, making it an ideal site for deploying
advanced near-field imaging concepts that exploit model-based image reconstruction
methodology. In this paper, a clinical prototype of a microwave imaging system,which actively illuminates the breast with a 16-element transceiving monopole
antenna array in the 300-1000-MHz range, is reported. Microwave exams
have been delivered to five women through a water-coupled interface to the
pendant breast with the participant positioned prone on an examination table.
This configuration has been found to be a practical, comfortable approach
to microwave breast imaging. Sessions lasted 10-15 min per breast and
included full tomographic data acquisition at seven different array heights
beginning at the chest wall and moving anteriorly toward the nipple for seven
different frequencies at each array position. This clinical experience appears
to be the first report of active near-field microwave imaging of the breast
and is certainly the first attempt to exploit model-based image reconstructions
from in vivo breast data in order to convert the
measured microwave signals into spatial maps of electrical permittivity and
conductivity. While clearly preliminary, the results are encouraging and have
supplied some interesting findings. Specifically, it appears that the average
relative permittivity of the breast as a whole correlates with radiologic
breast density categorization and may be considerably higher than previously
published values, which have been based on ex vivo
tissue specimens.
References
-
L. A. G. Rise et al., "SEER cancer statistics review 1973-1994",
Nat. Cancer Inst., Bethesda, MD,
NIH Pub. 97-2789,
-
M. Brown, F. Houn, E. Sickles and L. Kessler, "Screening mammography in community practice", Amer. J. Roentgen., vol. 165, pp. 1373-1377, 1995.
-
J. G. Elmore et al., "Ten year risk of false positive screening mammograms and clinical breast examinations", New Eng. J. Med., vol. 338, pp. 1089-1096,
1998.
-
R. Rosenberg et al., "The New Mexico mammography project screening mammography performance in Albuquerque, New Mexico 1991-1993", Cancer 1996, vol. 78, pp. 1731-1739, 1996.
-
P. T. Huynh, A. M. Jarolimek and S. Daye, "The false-negative mammogram", Radiograph.
, vol. 18, no. 5, pp. 1137-1154, 1998.
-
R. D. Rosenberg, W. C. Hunt, M. R. Williamson, F. D. Gilliland, P. W. Wiest, C. A. Kelsey, C. R. Key and M. N. Linver, "Effects of age, breast density, ethnicity and estrogen replacement therapy on screening mammographic sensitivity and cancer stage at diagnosis: Review of 183 134 screening mammograms in Albuquerque, New Mexico", Radiology, vol. 209, no. 2, pp. 511-518, 1998
.
-
M. Laya, E. Larson, S. Taplin and E. White, "Effect of estrogen replacement therapy on the specificity and sensitivity of screening mammography", J. Nat. Cancer Inst.
, vol. 88, pp. 643-649, 1996.
-
V. P. Jackson et al., "Imaging of the radiographically dense breast", Radiology, vol. 188, pp. 297-301, 1993.
-
N. F. Boyd, et al. "Quantitative classification of mammographic densities and breast cancer risk", J. Nat. Cancer Inst., vol. 87, pp. 670-675, 1995.
-
J. N. Wolfe, "Breast parenchymal patterns and their changes with age", Radiology, vol. 121, pp. 545-552, 1976.
-
J. Brisson et al., "The relation of mammographic features of the breast to breast cancer risk factors", Amer. J. Epidemiol., vol. 115, pp. 438-443, 1982.
-
O. Am and N. F. Boyd, "Mammographic parenchymal patterns: A marker of breast cancer risk", Epidemiol. Rev., vol. 15, pp.
196-208, 1993.
-
I. T. Gram et al., "Reproductive and menstrual factors in relation to mammographic parenchymal patterns among perimenopausal women",
Br. J. Cancer, vol. 71, pp. 647-650, 1995.
-
P. C. Stomper, D. J. D'Souza, P. A. DiNitto and M. A. Arredondo, "Analysis of parenchymal density on mammograms in 1353women 25-79 years old", Amer. J. Roentgen.
, vol. 167, pp. 1261-1265, 1996.
-
J. Elmore et al., "Variability in radiologists' interpretations of mammograms", New Eng. J. Med., vol. 331, pp.
1493-1499, 1994.
-
C. Beam, P. Layde and D. Sullivan, "Variability in the interpretation of screening mammograms by US radiologists", Arch. Internal. Med., vol. 156, pp. 209-212, 1996.
-
D. B. Kopans, Breast Imaging,
Philadelphia, PA: J. B. Lippincott, 1989, pp. 14-15.
-
G. Piperno, E. H. Frei and M. Moshitzky, "Breast cancer screening by impedance measurements", Frontiers Med. Biol. Eng., vol. 2, no.
2, pp. 111-117, 1990.
-
J. Cuzick, R. Holland, V. Barth, R. Davies, M. Faupel, I. Fentiman, H. J. Frischbier, J. L. LaMarque, M. Morgan, V. Sacchini, D. Vanel and U. Veronesi, "Electropotential measurements as a new diagnostic modality for breast cancer", Lancet, vol. 352, pp.
359-363, 1998.
-
S. I. Fields, et al. "Adjunctive improvement of mammographic accuracy using electrical
impedance scanning", RSNA, Chicago,
IL, Abstract, Nov.
1998.
-
J. Shaeffer, K. L. Carr, L. A. O'Grady and A. Resciniti, "ONCOSCAN combined with mammography to determine breast biopsy", in European Congr. Radiol., Vienna, Austria,Mar. 7-12 1999.
-
J. R. Keyserlingk, P. D. Ahlgren, E. Yu and N. Belliveau, "Infrared imaging of the breast: Initial reappraisal using high-resolution digital technology in 100 successive cases of stage I and II breast cancer", Breast J., vol. 4, no.
4, pp. 245-251, 1998.
-
R. I. Elliot and J. F. Head, "Thermography: Its relation to pathologic characteristics, vascularity, proliferation rate and survival of patients with invasive ductal carcinoma of the breast", Cancer, vol. 79, pp. 186-188, 1997.
-
S. A. Feig, et al. "Thermography, mammography and clinical examination in breas screening", Diag. Radiol, vol. 122, pp.
123-127, 1977.
-
C. J. Dowle, J. Caseldine, J. Tew, A. R. Manhire, E. J. Roebuck and R. W. Blamey, "An evaluation of transmission spectroscopy (lightscanning) in the diagnosis of symptomatic breast lesions", Clin. Radiol.
, vol. 38, pp. 375-377, 1987.
-
R. J. Bartrum and J. C. Crow, "Transillumination lightscanning to diagnose breast cancer: A feasibility study", Amer. J. Roentgen., vol. 142, pp. 409-414,
1984.
-
E. A. Sickles, "Breast cancer detection with transillumination and mammography", Amer. J. Roentgen., vol. 142, pp.
841-848, 1983.
-
G. E. Geslien, J. R. Fisher and C. Delaney, "Transillumination in breast cancer detection: Screening failures and potential", Amer. J. Roentgen., vol. 144, pp. 619-622,
1985.
-
W. T. Joines, Y. Zhang, C. Li and R. L. Jirtle, "The measured electrical properties of normal and malignant human tissues from 50 to 90 MHz", Med. Phys., vol. 21, pp. 547-50,
1994.
-
S. S. Chaudhury, R. K. Mishra, A. Swarup and J. M. Thomas, "Dielectric properties of normal and malignant human breast tissues at radiowave and microwave frequencies",
Ind. J. Biochem. Biophys., vol. 21, pp. 76-79, 1984.
-
J. Nuutinen, T. Lahtinen, M. Turunen, E. Alanen, M. Tenhunen, T. Usenius and R. Kolle, "A dielectric method for measuring early and late reactions in irradiated human skin", Radiotherapy Oncol., vol. 47, pp. 249-254, 1998.
-
S. Caorsi, G. L. Gragnani and M. P. Pastorino, "Reconstruction of dielectric permittivity distributions in arbitrary 2D inhomogeneous biological bodies by a multiview microwave numerical method", IEEE Trans. Med. Imag., vol. 12, pp.
232-239, June 1993.
-
N. Jaochimowicz, C. Pinchot and R. Hugonin, "Inverse scattering: An iterative numerical method for electromagnetic imaging", IEEE Trans. Antennas Propagat., vol. 39, pp. 1742-1752, 1991.
-
C. Pichot and A. Franchois, "Microwave imaging-complex permittivity reconstruction with a Levenberg-Marquardt method", IEEE Trans. Antennas
Propagat., vol. 45, pp. 203-215, Feb. 1997.
-
P. D. Meaney, K. D. Paulsen and T. P. Ryan, "Two-dimensional hybrid element image reconstruction for TM illumination", IEEE Trans. Antennas Propagat., vol. 43, pp. 239-247, Mar. 1995.
-
A. Franchois, A. Joisel, C. Pichot and J. C. Bolomey, "Quantitative microwave imaging with a 2.45-GHz planar microwave camera", IEEE Trans. Med. Imag., vol. 17, pp.
550-561, Aug. 1998.
-
P. M. Meaney, K. D. Paulsen and J. Chang, "Near-field microwave imaging of biologically-based materials using a monopole system", IEEE Trans. Microwave Theory Tech., vol.
46, pp. 31-45, Jan. 1998.
-
P. M. Meaney, K. D. Paulsen, J. T. Chang, M. W. Fanning and A. Hartov, "Compensation for nonactive array element effects in a microwave imaging system: Part II-Imaging results", IEEE Trans. Med. Imaging, vol. 18, pp. 508-518, June 1999
.
-
P. M. Meaney, K. D. Paulson, A. Hartov and R. K. Crane, "Multi-target microwave imaging for tissue assessment: Initial evaluation in tissue-equivalent phantoms", IEEE Trans. Biomed.
Eng., vol. 43, pp. 878-890, Sept. 1996.
-
S. C. Hagness, A. Taflove and J. E. Bridges, "Three-dimensional FDTD Analysis of a pulsed microwave confocal system for breast cancer detection: Design of an antenna-array element", IEEE Trans. Antennas Propagat., vol. 47, pp. 783-791, May 1999.
-
S. C. Hagness, A. Taflove and J. E. Bridges, "Two-dimensional FDTD analysis of a pulsed microwave confocal system for breast cancer detection: Fixed-focus and antenna-array sensors", IEEE Trans. Biomed. Eng., vol. 45, pp. 1470-1479,
Dec. 1998.
-
E. C. Fear and M. A. Stuchly, "Microwave system for breast tumor detection", IEEE Microwave Guided Lett., vol. 9, pp. 470
-472, Nov. 1999.
-
P. M. Meaney, K. D. Paulsen, A. Hartov and R. C. Crane, "An active microwave imaging system for reconstruction of 2-D electrical property distributions", IEEE Trans. Biomed. Imag., vol. 42, pp. 1017-1026, Oct. 1995.
-
K. D. Paulsen and P. M. Meaney, "Compensation for nonactive array element effects in a microwave imaging system: Part I-Forward solution vs. measured data comparison", IEEE Trans. Med. Imag., vol. 18, pp. 496-507, June 1999.
-
D. R. White, H. Q. Woodard and S. M. Hammond, "Average soft-tissue and bone models for use in radiation dosimetry", Br. J. Radiol., vol. 60, pp. 903-913,
1987.
-
H. Q. Woodard and D. R. White, "The composition of body tissues",
Br. J. Radiol., vol. 59, pp. 1209-1219, 1986.
-
L. C. Junqueira, J. Carneiro and R. Kelley, Basic Histology, 8th ed.
Norwalk, CT: Appleton & Lange, 1995, pp.
443-446.
-
C. Beckmann et al., Obstetrics & Gynecology, 2nd ed. Baltimore, MD: Williams & Wilkins, 1992, pp. 235-238.
-
A. Scharzberg and A. J. Devaney, "Super-resolution in diffraction tomography", Inverse Problems, vol. 8, pp. 149-164, 1992.
-
W. C. Chew, Y. M. Wang, G. Otto, D. Lesselier and J. C. Bolomey, "On the inverse source method of solving inverse scattering problems", Inverse Problems, vol. 10, pp. 547-553,
1994.
-
M. Bertero, P. Boccacci and M. Piana, "Resolution and super-resolution in inverse diffraction", in Proc. Inverse Problems Wave Propagat. Diffraction, Aix-les-Bains, France, 1996, pp. 1-17.
-
W. C. Chew, G. P. Otto, W. H. Weedon, J. H. Lin, C. C. Lu, Y. M. Wang and M. Moghaddam, "Nonlinear diffraction tomography: The use of inverse scattering for imaging", Int. J. Imaging Syst. Technol., vol.
7, pp. 16-24, 1996.
-
P. Lobel, C. Pichot, L. Blanc-Feraud and M. Barlaud, "Conjugate-gradient algorithm with edge-preserving regularization for image reconstruction from Ipswich data for mystery objects", IEEE Antennas Propagat. Mag., vol. 39, pp. 12-14,
Jan. 1997.
-
P. M. Meaney, K. D. Paulsen, M. W. Fanning and J. T. Chang, "Advances in microwave imaging for clinical implementations in breast tumor detection and thermal therapy monitoring", Recent Res. Development Microwave Theory Tech., vol. 1, pp. 37-56, 1999
.