2000 IEEE. Personal use of this material is permitted. However, permission to reprint/republish this material for advertising or promotional purposes or for creating new collective works for resale or redistribution to servers or lists, or to reuse any copyrighted component of this work in other works must be obtained from the IEEE.

IEEE Transactions on Microwave Theory and Techniques
Volume 48 Number 11, November 2000

Table of Contents for this issue

Complete paper in PDF format

Determination of Electromagnetic Phased-Array Driving Signals for Hyperthermia Based on a Steady-State Temperature Criterion

Marc E. Kowalski, Student Member, IEEE and Jian-Ming Jin Senior Member, IEEE

Page 1864.

Abstract:

Electromagnetic phased arrays can be used to preferentially heat tumors, potentially providing clinical benefit in oncological applications. Synthesizing a temperature field that exposes cancerous cells to sufficiently elevated temperatures while not harming healthy cells is not a trivial problem,and can often be assisted by the use of computational models of the patient. In this paper, a method for determining phased-array driving signals that result in a clinically favorable temperature distribution is presented. It is shown by example that simply focusing the power deposited over the tumor is not sufficient to guarantee that the peak temperature elevation occurs in the tumor in biological media. To remedy this, the temperature is predicted by a simple computational model and directly optimized as a function of the phased-array driving signals. To facilitate this optimization, superposition principles are used for both the electromagnetic and thermal models to minimize the number of computationally intensive forward problems that must be solved.

References

  1. J. Overgaard, D. Gonzalez, M. Hulshof, G. Arcangeli, O. Dahl, O. Mella and S. Bentzen, "Randomized trial of hyperthermia as an adjuvant to radiotherapy for recurrent or metastatic malignant melanoma", Lancet, vol. 345, pp.  540-543, 1995.
  2. P. Wust, M. Seebass, J. Nadobny, P. Deuflhard, G. Monich and R. Felix, "Simulation studies promote technological development of radio-frequency phased array hyperthermia", Int. J. Hyperthermia, vol. 12, no. 4, pp.  477-494, 1996.
  3. P. F. Turner, "Regional hyperthermia with an annular phased array", IEEE Trans. Biomed. Eng., vol. BME-31, pp.  106-114, Jan.   1984.
  4. P. Wust, J. Nadobny, R. Felix, P. Deuflhard, A. Louis and W. John, "Strategies for optimized application of annular-phased-array systems in clinical hyperthermia", Int. J. Hyperthermia, vol. 7, no. 1, pp.  157-173, 1991.
  5. D. M. Sullivan, "Mathematical methods for treatment planning in deep regional hyperthermia", IEEE Trans. Microwave Theory Tech., vol. 39, pp.  864-872, May  1991.
  6. B. J. James and D. M. Sullivan, "Creation of three-dimensional patient models for hyperthermia treatment planning", IEEE Trans. Biomed. Eng., vol. 39, pp.  238-242, Mar.  1992.
  7. B. J. James and D. M. Sullivan, "Direct use of CT scans for hyperthermia treatment planning", IEEE Trans. Biomed. Eng., vol. 39, pp.  845-851,  Aug.  1992.
  8. F. Bardati, A. Borrani, A. Gerardino and G. A. Lovisolo, "SAR optimization in a phased array radiofrequency hyperthermia system", IEEE Trans. Biomed. Eng., vol. 42, pp.  1201-1207, Dec.  1995.
  9. K. S. Nikita, N. G. Maratos and N. K. Uzunoglu, "Optimization of the deposited power distribution inside a layered lossy medium irradiated by a coupled system of concentrically placed waveguide applicators", IEEE Trans. Biomed. Eng., vol. 45, pp.  909-920, July  1998.
  10. K. D. Paulsen, S. Geimer, J. Tang and W. E. Boyse, "Optimization of pelvic heating rate distributions with electromagnetic phased arrays", Int. J. Hyperthermia, vol. 15, no. 3, pp.  157-186, 1999.
  11. M. Knudsen and U. Hartmann, "Optimal temperature control with a phased array hyperthermia system", IEEE Trans. Microwave Theory Tech., vol. 34, pp.  597-603, May  1986.
  12. P. VanBaren and E. S. Ebbini, "Multipoint temperature control during hyperthermia treatments: Theory and simulation", IEEE Trans. Biomed. Eng., vol. 42, pp.  818-827, Aug.  1995.
  13. E. Hutchinson, M. Dahleh and K. Hynynen, "The feasibility of MRI feedback control for intracavity phased array hyperthermia treatments", Int. J. Hyperthermia, vol. 14, no. 1, pp.  39-56, 1998.
  14. K. S. Nikita, N. G. Maratos and N. K. Uzunoglu, "Optimal steady-state temperature distribution for a phased array hyperthermia system", IEEE Trans. Biomed. Eng., vol. 40, pp.  1299-1306, Dec.  1993.
  15. S. K. Das, S. T. Clegg and T. V. Samulski, "Computational techniques for fast hyperthermia temperature optimization", Med. Phys., vol. 26, no. 2, pp.  319-328, Feb.  1999.
  16. J. Lang, B. Erdmann and M. Seebass, "Impact of nonlinear heat transfer on temperature control in regional hyperthermia", IEEE Trans. Biomed. Eng., vol. 46, pp.  1129-1138, Sept.  1999.
  17. K. S. Yee, "Numerical solution of initial boundary value problems involving Maxwell's equations in isotropic media", IEEE Trans. Antennas Propagat., vol. AP-14, pp.  302-307, Mar.  1966.
  18. C.-Q. Wang and O. P. Gandhi, "Numerical simulation of annular phased arrays for anatomically based models using the FDTD method", IEEE Trans. Microwave Theory Tech., vol. 37, pp.  118-126, Jan.  1989.
  19. D. M. Sullivan, "Three-dimensional computer simulation in deep regional hyperthermia using the finite-difference time-domain method", IEEE Trans. Microwave Theory Tech., vol. 38, Feb.  1990.
  20. J.-Y. Chen and O. P. Gandhi, "Numerical simulation of annular-phased arrays of dipoles for hyperthermia of deep-seated tumors", IEEE Trans. Biomed. Eng., vol. 39, pp.  209-216, Mar.  1992.
  21. P. C. Cherry and M. F. Iskander, "FDTD analysis of power deposition patterns of an array of interstitial antennas for use in microwave hyperthermia", IEEE Trans. Microwave Theory Tech., vol. 40, pp.  1692 -1700, Aug.  1992.
  22. D. M. Sullivan, D. Buechler and F. A. Gibbs, "Comparison of measured and simulated data in an annular phased array using an inhomogeneous phantom", IEEE Trans. Microwave Theory Tech., vol. 40, pp.  600-604, Mar.  1992 .
  23. C. E. Reuter, A. Taflove, V. Sathiaseelan, M. Piket-May and B. B. Mittal, "Unexpected physical phenomena indicated by FDTD modeling of the Sigma-60 deep hyperthermia applicator", IEEE Trans. Microwave Theory Tech., vol. 46, pp.  313-319, Apr.  1998 .
  24. H. H. Pennes, "Analysis of tissue and arterial blood temperatures in the resting human arm", J. Appl. Physiol., vol. 1, pp.  93-122, 1948.
  25. P.-Y. Cresson, C. Michel, L. Dubois, M. Chive and J. Pribetich, "Complete three-dimensional modeling of new microstrip-microslot applicators for microwave hyperthermia using the FDTD method", IEEE Trans. Microwave Theory Tech., vol. 42, pp.  2657-2666, Dec.  1994.
  26. J.-C. Camart, D. Despretz, M. Chive and J. Pribetich, "Modeling of various kinds of applicators used for microwave hyperthermia based on the FDTD method", IEEE Trans. Microwave Theory Tech., vol. 44, pp.  1811-1818, Oct.  1996 .
  27. D. G. Luenberger, Introduction to Linear and Nonlinear Programming, Reading, MA: Addison-Wesley, 1973.
  28. A. Jennings and J. J. McKeown, Matrix Computation, 2nd ed.   New York: Wiley, 1992.
  29. C. Johnson, R. Kress, R. Roemer and K. Hynynen, "Multi-point feedback control system for scanned, focused ultrasound hyperthermia", Phys. Med. Biol., vol. 35, no.  6, pp.  781-786, 1990.
  30. I. G. Zubal, C. R. Harrell, E. O. Smith, Z. Rattner, G. Gindi and P. B. Hoffer, "Computerized three-dimensional segmented human anatomy", Med. Phys., vol. 21, no. 2, pp.  299-302, Feb.  1992.
  31. J. P. Berenger, "A perfectly matched layer for the absorption of electromagnetic waves", J. Comput. Phys., vol. 114, pp.  185-200, 1994.
  32. M. E. Kowalski, "Modeling, optimization, and control of electromagnetic oncological hyperthermia", M.S. thesis, Dept. Elect. Comput. Eng., Univ. Illinois at Urbana-Champaign, Urbana, IL, 1999.
  33. C. Gabriel, S. Gabriel and E. Corthout, "The dielectric properties of biological tissues: I. Literature survey", Phys. Med. Biol., vol. 41, pp.  2231-2249,  1996.
  34. S. Gabriel, R. W. Lau and C. Gabriel, "The dielectric properties of biological tissues: III. Parametric models for the dielectric spectrum of tissues", Phys. Med. Biol., vol. 41, pp.  2271-2293, 1996.
  35. F. A. Duck, Physical Properties of Tissue: A Comprehensive Reference, New York: Academic, 1990.