2000 IEEE. Personal use of this material is permitted. However, permission to reprint/republish this material for advertising or promotional purposes or for creating new collective works for resale or redistribution to servers or lists, or to reuse any copyrighted component of this work in other works must be obtained from the IEEE.

IEEE Transactions on Microwave Theory and Techniques
Volume 48 Number 11, November 2000

Table of Contents for this issue

Complete paper in PDF format

The Complete Set of Dyadic Green's Functions for the Parallel-Plate Chirowaveguide and the Application to the Coaxial-Probe Excitation Method

Hon-Tat Hui, Member, IEEE Edward K. N. Yung, Senior Member, IEEE and Xin-Qing Sheng

Page 1917.

Abstract:

In this paper, the complete set of four spatial-domain electromagnetic dyadic Green's functions are rigorously derived for the parallel-plate chirowaveguide. These dyadic Green's functions are presented in the cylindrical coordinates,which are found to facilitate numerical calculations. An electric-field integral equation for the coaxial-probe excitation problem is formulated using the dyadic Green's functions, and the moment-method solution is sought. The probe admittance and current distribution along the probe at different chiral levels are obtained. Results show that a substantially higher admittance level is obtained, but the admittance bandwidth decreases with the chiral parameter. Stopbands at which no net power input into the waveguide are observed. This characteristic is found to have no match in the nonchiral waveguide. The computed current distribution along the probe shows a greater current magnitude than that of the nonchiral waveguide. The validity of the numerical solution is checked with the measured values for the nonchiral case.

References

  1. S. Bassiri, N. Engheta and C. H. Papas, "Dyadic Green's function and dipole radiation in chiral media", Alta Freq., vol. 55, pp.  83-88, 1986.
  2. I. V. Lindell, A. H. Sihvola, S. A. Tretyakov and A. J. Viitanen, Electromagnetic Waves in Chiral and Bi-Isotropic Media, Norwood, MA: Artech House, 1994.
  3. N. Engheta and M. W. Kowarz, "Antenna radiation in the presence of a chiral sphere", J. Appl. Phys., vol. 67, no. 2, pp.  639-647, 1990.
  4. A. Toscano and L. Vegni, "Spectral dyadic Green's function formulation for planar integrated structures with a grounded chiral slab", J. Electromag. Waves Applicat., vol. 6, pp.  751-769, 1992.
  5. S. M. Ali, T. M. Habashy and J. A. Kong, "Spectral-domain dyadic Green's function in layered chiral media", J. Opt. Soc. Amer. A, Opt. Image Sci., vol. 9, pp.  413-423, 1992.
  6. L. W. Li, P. S. Kooi, M. S. Leong and T. S. Yeo, "A general expression of dyadic Green's functions in radially multilayered chiral media", IEEE Trans. Antennas Propagat., vol. 43, pp.  232-238, Feb.  1995.
  7. H. T. Hui and E. K. N. Yung, "The eigenfunction expansion of dyadic Green's functions for chirowaveguides", IEEE Trans. Microwave Theory Tech., vol. 44, pp.  1575-1583, Sept.  1996.
  8. H. T. Hui and E. K. N. Yung, "Corrections to `The eigenfunction expansion of dyadic Green's functions for chirowaveguides'", IEEE Trans. Microwave Theory Tech., vol. 45, p.  561, Apr.  1997.
  9. H. T. Hui and E. K. N. Yung, "The eigenfunction expansion of dyadic Green's functions for the parallel-plate chirowaveguides", Proc. Inst. Elect. Eng., vol. 145, pp.  273-278, 1998.
  10. E. L. Tan and S. Y. Tan, "Dyadic Green's functions for circular waveguides filled with biisotropic media", IEEE Trans. Microwave Theory Tech., vol. 47, pp.  1134-1137, July  1999.
  11. B. R. Rao, "Current distribution and impedance of an antenna in a parallel-plate region", Proc. Inst. Elect. Eng., vol. 112, pp.  259-268, 1965.
  12. D. V. Otto, "The admittance of cylindrical antennas driven from a coaxial line", Radio Sci., vol. 2, pp.  1031 -1042, 1967.
  13. Z. Shen and R. H. MacPhie, "Modal expansion analysis of monopole antennas driven from a coaxial line", Radio Sci., vol. 31, pp.  1037 -1046, 1996.
  14. D. L. Jaggard, J. C. Liu, A. Grot and P. Pelet, "Radiation and scattering from thin wires in chiral media", IEEE Trans. Antennas Propagat., vol. 40, pp.  1273-1282,  Nov.  1992.
  15. A. Lakhtakia, Beltrami Fields in Chiral Media, Singapore: World Scientific, 1994.
  16. C. T. Tai, Dyadic Green Functions in Electromagnetic Theory, Piscataway, NJ: IEEE Press, 1994.
  17. N. Engheta and P. Pelet, "Modes in chirowaveguides", Opt. Lett. , vol. 14, pp.  593-595, June  1989.
  18. R. F. Harrington, Time-Harmonic Electromagnetic Fields, New York: McGraw-Hill, 1961.