2000 IEEE. Personal use of this material is permitted. However, permission to reprint/republish this material for advertising or promotional purposes or for creating new collective works for resale or redistribution to servers or lists, or to reuse any copyrighted component of this work in other works must be obtained from the IEEE.

IEEE Transactions on Microwave Theory and Techniques
Volume 48 Number 11, November 2000

Table of Contents for this issue

Complete paper in PDF format

Optimization of Distributed MEMS Transmission-Line Phase Shifters-U-Band and W-Band Designs

N. Scott Barker, Member, IEEE and Gabriel M. Rebeiz Fellow, IEEE

Page 1957.

Abstract:

The design and optimization of distributed micromechanical system (MEMS) transmission-line phase shifters at both U-and W-band is presented in this paper. The phase shifters are fabricated on 500-µm quartz with a center conductor thickness of 8000 Å of gold. The U-band design results in 70°/dB at 40 GHz and 90°/dB at 60 GHz with a 17% change in the MEMS bridge capacitance. The W-band design results in 70°/dB from 75 to 110 GHz with a 15% change in the MEMS bridge capacitance. The W -band phase-shifter performance is limited by the series resistance of the MEMS bridge, which is estimated to be 0.15 . Calculations demonstrate that the performance of the distributed MEMS phase shifter can be greatly increased if the change in the MEMS bridge capacitance can be increased to 30% or 50%. To our knowledge, these results present the best published performance at 60 and 75-110 GHz of any nonwaveguide-based phase shifter.

References

  1. S. K. Koul and B. Bhat, Microwave and Millimeter Wave Phase Shifters, Norwood, MA: Artech House, 1991,vol. I.
  2. W. E. Hord, "Design considerations for rotary-field ferrite phase shifters", Microwave J., vol. 31, pp.  105 -115, Nov.  1988.
  3. W. E. Hord, "Microwave and millimeter wave ferrite phase shifters", Microwave J., vol. 32, pp.  81 -89, 1989.
  4. W. P. Clark, "A high power phase shifter for phased array systems", IEEE Trans. Microwave Theory Tech., vol. MTT-13, pp.  785-788, Nov.  1965.
  5. S. Weinreb, W. Berk, S. Duncan and N. Byer, "Monolithic varactor 360° phase shifters for 75-110 GHz", in Int. Semi-Device Conf. Dig., Charlottesville, VA, Dec. 1993.
  6. V. Sokolov, J. J. Geddes, A. Contolatis, P. E. Bauhahn and C. Chao, "A Ka -band GaAs monolithic phase shifter", IEEE Trans. Microwave Theory Tech., vol. MTT-31, pp.  1077-1083, Dec.  1983.
  7. P. R. Shepherd and M. J. Cryan, "Schottky diodes for analogue phase shifters in GaAs MMIC's", IEEE Trans. Microwave Theory Tech., vol. 44, pp.  2112-2116, Nov.  1996.
  8. H. A. Atwater, "Circuit design of the loaded-line phase shifter", IEEE Trans. Microwave Theory Tech. , vol. MTT-33, pp.  626-634, July  1985.
  9. C. K. Pao, J. C. Chen, G. L. Lan, D. C. Wang, W. S. Wong and M. I. Herman, "V -band monolithic phase shifters", in IEEE GaAs IC Symp. Tech. Dig., Nov. 1988, pp.  269-272. 
  10. C. Chen, W. E. Courtney, L. J. Mahoney, M. J. Manfra, A. Chu and H. A. Atwater, "A low-loss Ku -band monolithic analog phase shifter", IEEE Trans. Microwave Theory Tech., vol. MTT-35, pp.  315-320,  Mar.  1987.
  11. A. Megej and V. F. Fusco, "Low-loss analog phase shifter using varactor diodes", Microwave Opt. Tech. Lett., vol. 19, no. 6, pp.  384 -386, Dec.  1998.
  12. B. Glance, "A fast low-loss microstrip PIN phase shifter", IEEE Trans. Microwave Theory Tech., vol. MTT-27, pp.  14-16, Jan.  1979.
  13. C. Goldsmith, "Ultra-low-cost RF MEMS for electronically scanned apertures", Defence Advanced Res. Projects Agency Rev., March 1999.
  14. A. S. Nagra, J. Xu, E. Erker and R. A. York, "Monolithic GaAs phase shifter circuit with low insertion loss and continuous 0-360° phase shift at 20 GHz", IEEE Microwave Guided Wave Lett., vol. 9, pp.  31-33, Jan.  1999.
  15. A. S. Nagra and R. A. York, "Distributed analog phase shifters with low insertion loss", IEEE Trans. Microwave Theory Tech., vol. 47, pp.  1705-1711, Sept.  1999.
  16. D. M. Pozar, Microwave Engineering, Reading, MA: Addison-Wesley, 1990.
  17. M. J. W. Rodwell, S. T. Allen, R. Y. Yu, M. G. Case, U. Bhattacharya, M. Reddy, E. Carman, M. Kamegawa, Y. Konishi, J. Pusl and R. Pullela, "Active and nonlinear wave propagation devices in ultrafast electronicsand optoelectronics", Proc. IEEE, vol. 82, pp.  1037-1059, July  1994.
  18. N. S. Barker and G. M. Rebeiz, "Distributed MEMS true-time delay phase shifters and wide-band switches", IEEE Trans. Microwave Theory Tech., vol. 46, pp.  1881-1890, Nov.  1998.
  19. B. A. Saleh and M. C. Teich, Fundamentals of Photonics, New York: Wiley, 1991.
  20. J. B. Muldavin and G. M. Rebeiz, "Design of high isolation MEMS switches", IEEE Trans. Microwave Theory Tech., to be published.
  21. R. K. Hoffmann, Handbook of Microwave Integrated Circuits, Norwood, MA: Artech House, 1987.
  22. M. J. W. Rodwell, M. Kamegawa, R. Yu, M. Case, E. Carman and K. S. Giboney, "GaAs nonlinear transmission lines for picosecond pulse generation and millimeter-wave sampling", IEEE Trans. Microwave Theory Tech., vol. 40, pp.  1194-1204, July  1991 .
  23. J. S. Hayden and G. M. Rebeiz, "Low-loss cascadable MEMS distributed X -band phase shifters", IEEE Microwave Guided Wave Lett.,
  24. J. S. Hayden and G. M. Rebeiz, "One and two-bit low-loss cascadable MEMS distributed X -band phase shifters", in IEEE MTT-S Int. Microwave Symp. Dig. , Boston, MA, June 2000, pp.  161-164.