2000 IEEE. Personal use of this material is permitted. However, permission to reprint/republish this material for advertising or promotional purposes or for creating new collective works for resale or redistribution to servers or lists, or to reuse any copyrighted component of this work in other works must be obtained from the IEEE.

IEEE Transactions on Microwave Theory and Techniques
Volume 48 Number 11, November 2000

Table of Contents for this issue

Complete paper in PDF format

Combined Electromagnetic and Heat-Conduction Analysis of Rapid Rewarminging of Cryopreserved Tissues

Cai-Cheng Lu, Senior Member, IEEE Huai-Zhi Li and Dayong Gao

Page 2185.

Abstract:

In this paper, a combined solution of an electromagnetic (EM)-wave equation and head transfer equation is presented to analyze the microwave rewarming process of cryopreserved tissues. The solution process starts with an initial temperature of the tissue. The EM-field distribution inside the tissue is determined first by solving hybrid surface-volume integral equations. This solution provides a thermal source term for the heat-transfer equation. A finite-difference scheme is then applied to solve the heat-transfer equation,which determines the temperature distribution inside the tissue for the next time step. Since the tissue's electrical characteristics ( and ) are functions of temperature, their values are then updated based on the new temperature distribution. The iteration continues until a termination condition is satisfied. This combined iterative solution of wave equation and heat-transfer equation allows us to model the complex rewarming process. Numerical results are presented to demonstrate the application of the combined analysis approach.

References

  1. G. M. Fahy, "Vitrification,"in Proceedings of NATO Advanced Study Institute on Biophysics of Organ Cryopreservation, New York: Plenum, 1987, pp.  133-147. 
  2. G. M. Fahy, "Vitrification of multicellular systems and whole organs", Cryobiol., vol. 24, p.  581, 1987.
  3. T. Nei, "Mechanism of hemolysis of erythrocytes by freezing at near-zero temperatures-I. Microscopic observation of hemolyzing erythrocytes during the freezing and thawing process", Cryobiol., vol. 4, pp.  153-156,  1967.
  4. X. Bai, D. E. Pegg, S. Evans and J. D. J. Penfold, "Analysis of electromagnetic heating patterns inside a cryopreserved organ", J. Biomed. Eng., vol. 14, pp.  459-466,  Nov.  1992.
  5. J. D. J. Penfold and S. Evans, "Control of thermal runaway and uniformity of heating in the electromagnetic rewarming of a cryopreserved kidney phantom", Cryobiol., vol. 30, pp.  493-508, 1993.
  6. L. Ma, D. L. Paul, N. Pothecary, C. Railton, J. Bows, L. Barratt, J. Mullin and D. Simons, "Experimental validation of a combined electromagnetic and thermal FDTD model of a microwave heating process", IEEE Trans. Microwave Theory Tech., vol. 43, pp.  2565-2571, Nov.  1995.
  7. F. Torres and B. Jecko, "Complete FDTD analysis of microwave heating processes in frequency-dependent and temperature-dependent media", IEEE Trans. Microwave Theory Tech., vol. 45, pp.  108-116, Jan.  1997 .
  8. S. A. Patankar, Numerical Heat Transfer and Fluid Flow, Seattle, WA: Hemisphere, 1980.
  9. C. C. Lu and W. C. Chew, "Electromagnetic scattering from material coated PEC objects: A hybrid volume and surface integral equation approach", in 1999 IEEE AP-S Int. Symp. Dig., Orlando, FL, July 1999, pp.  2562-2565. 
  10. R. F. Harrington, Field Computation by Moment Methods, New York: Macmillan, 1968.
  11. S. M. Rao, D. R. Wilton and A. W. Glisson, "Electromagnetic scattering by surfaces of arbitrary shape", IEEE Trans. Antennas Propagat., vol. AP-30, pp.  409-418,  Mar.  1982.
  12. D. H. Schaubert, D. R. Wilton and A. W. Glisson, "A tetrahedral modeling method for electromagnetic scattering by arbitrary shaped inhomogeneous dielectric bodies", IEEE Trans. Antennas Propagat., vol. AP-32, pp.  77-85, Jan.  1984.
  13. S. Evans, M. J. Rachman and D. E. Pegg, "Design of a UHF applicator for rewarming of cryopreserved biomaterials", IEEE Trans. Biomed. Eng., vol. 39, pp.  217-225, Mar.  1992.
  14. M. N. O. Sadiku, Numerical Techniques in Electromagnetics, Boca Raton, FL: CRC Press, 1992.
  15. D. Y. Gao, T. Jackson and W. Zhang, "Development of a novel microwave cavity to vitrify biological tissues for use in surgical transplantation,"in Advances in Heat and Mass Transfer in Biotechnology, S. Clegg, Ed. New York: ASME Press, 1997,vol. HTD-335/BED-37, pp.  185-190. 
  16. T. H. Jackson, A. Ungan, J. K. Critser and D. Y. Gao, "A novel means of enhancing vitrification of biomaterials by microwave irradiation during cooling", Cryobiol. , vol. 34, pp.  363-372, 1997.
  17. D. Y. Gao, Q. Zhang and H. Z. Li, "Application of microwave irradiation to cryopreservation of biomaterials", in Proc. BEMS-EMBS'99, Atlanta, GA, p.  1287.