2000 IEEE. Personal use of this material is permitted. However, permission to reprint/republish this material for advertising or promotional purposes or for creating new collective works for resale or redistribution to servers or lists, or to reuse any copyrighted component of this work in other works must be obtained from the IEEE.

IEEE Transactions on Microwave Theory and Techniques
Volume 48 Number 12, December 2000

Table of Contents for this issue

Complete paper in PDF format

Macro-Elements for Efficient FEM Simulation of Small Geometric Features in Waveguide Components

Yu Zhu, Student Member, IEEE and Andreas C. Cangellaris Fellow, IEEE

Page 2254.

Abstract:

This paper introduces a novel class of specially constructed elements aimed at the expedient finite-element modeling of waveguide components containing fine geometric/material features such as dielectric and conducting posts. Instead of utilizing a very fine grid to resolve such fine features,special elements are constructed that capture accurately the electromagnetic properties of the fine features. Since the size of these macro-elements is commensurate with the size of the elements of the grid used to discretize the volume in which the fine features are embedded, their use results in significant reduction in the number of unknowns in the finite-element approximation of the electromagnetic problem without sacrificing solution accuracy. The numerical implementation and effectiveness of the proposed macro-elements are demonstrated through several numerical experiments.

References

  1. R. Collin, Field Theory of Guided Waves, Oxford: U.K.: Oxford Univ. Press, 1991.
  2. P. G. Lia, T. Admas, Y. Leviatan and J. Perini, "Multiple-post inductive obstacles in rectangular waveguide", IEEE Trans. Microwave Theory Tech., vol. MTT-32, pp.  365-373, April  1984.
  3. A. Cangellaris, M. Celik, S. Pasha and L. Zhao, "Electromagnetic model order reduction for system-level modeling", IEEE Trans. Microwave Theory Tech., vol. 47, pp.  840-849, June  1999.
  4. A. Bossavit and I. Mayergoyz, "Edge-elements for scattering problems", IEEE Trans. Magn., vol. 25, pp.  2816-2822, June  1999.
  5. J. P. Webb, "Hierarchal vector basis functions of arbitrary order for triangular and tetrahedral finite elements", IEEE Trans. Antennas Propagat., vol. 4, pp.  1244-1253, Aug.  1999.
  6. J. F. Lee, "Tangential vector finite elements and their application to solving electromagnetic scattering problems", Appl. Computat. Electromagn. Soc. Newsletter, vol. 10, pp.  52-75, Mar.  1995.
  7. P. Feldmann and R. W. Freund, "Efficient linear circuit analysis by Pade approximation via the Lanczos process", IEEE Trans. Computer-Aided Design, vol. 14, pp.  639-649, May  1995.
  8. A. Odabasioglu, M. Celik and L. T. Pileggi, "PRIMA: Passive reduced-order interconnect macromodeling algorithm", IEEE Trans. Computer-Aided Design, vol. 17, pp.  645-653,  Aug.  1998.
  9. M. Zunoubi, K. C. Donepudi, J. M. Jin and W. C. Chew, "Efficient time-domain and frequency-domain finite-element solution of Maxwell's equations using spectral Lanczos algorithms", IEEE Trans. Microwave Theory Tech., vol. 46, pp.  1141-1149, Aug.  1998.
  10. A. C. Cangellaris and L. Zhao, "Passivity of discrete electromagnetic systems", in Proc. 14th Annu. Rev. Progress Appl. Computational Electromagn., Monterey, CA, Mar. 1998, pp.  721-731.