2000 IEEE. Personal use of this material is permitted. However, permission to reprint/republish this material for advertising or promotional purposes or for creating new collective works for resale or redistribution to servers or lists, or to reuse any copyrighted component of this work in other works must be obtained from the IEEE.

IEEE Transactions on Microwave Theory and Techniques
Volume 48 Number 12, December 2000

Table of Contents for this issue

Complete paper in PDF format

An Efficient Analysis of Planar Microwave Circuits Using A DWT-Based HAAR MRTD Scheme

Guillaume Carat, Raphaël Gillard, Jacques Citerne, Member, IEEE and Joe Wiart Member, IEEE

Page 2261.

Abstract:

A new wavelet-based technique to generate multiresolution time-domain schemes is presented in this paper. By using symbolic calculus, a rigorous and general formulation of subgridding at every level of multiresolution is obtained. As it is rigorously equivalent to a finer finite-difference time-domain (FDTD) scheme, it does not require any particular treatments for boundary conditions. This technique has been successfully applied to the study of microstrip structures. The near-and the far-field computation can be both improved in terms of CPU time and memory storage, while maintaining the same accuracy as the classical FDTD computation.

References

  1. B. Z. Steinberg and Y. Leviatan, "On the use of wavelet expansions in the method of moments", IEEE Trans. Antennas Propagat., vol. 41, pp.  610-619,  Feb.  1993.
  2. R. Loison, R. Gillard, J. Citerne, G. Piton and H. Legay, "A multi-resolution MoM analysis of multiport structures using matched terminations", IEEE Trans. Microwave Theory Tech., vol. 49, Jan.  2000. to be published.
  3. M. Krumpholz and L. P. B. Katehi, "MRTD: New time-domain schemes based on multiresolution analysis", IEEE Trans. Microwave Theory Tech., vol. 44, pp.  555-571, Apr.  1996.
  4. M. Fujii and W. J. R. Hoefer, "A 3-D Haar-wavelet-based multiresolution analysis similar to the FDTD method-Derivation and application", IEEE Trans. Microwave Theory Tech., vol. 46, pp.  2463 -2475, Dec.  1998.
  5. E. M. Tentzeris, R. L. Robertson, J. F. Harvey and L. P. B. Katehi, "PML absorbing boundary conditions for the characterization of open microwave circuit components using multiresolution time-domain techniques (MRTD)", IEEE Trans. Antennas Propagat., vol. 47, pp.  1709-1715, Nov.  1999.
  6. M. Fujii and W. J. R. Hoefer, "Field singularity correction in 2-D time domain Haar wavelet modeling of waveguide components", in IEEE MTT-S Int. Microwave Symp. Dig., 1999, pp.  1467-1470. 
  7. I. Daubechies, Ten Lectures on Wavelets, Philadelphia, PA: Soc. Indus. Appl. Math., 1992.
  8. G. Carat, R. Gillard, J. Citerne and J. Wiart, "A DWT based MRTD scheme using Haar wavelets", in Millennium Antennas Propagat. Conf., Apr. 2000.
  9. G. Carat, R. Gillard, J. Citerne and J. Wiart, "A discrete wavelet transform (DWT)-based far-field computation using the FDTD method", Microwave Opt. Technol. Lett., vol. 25, no. 4, pp.  241-243, May  2000.
  10. M. J. Picket-May, A. Taflove and J. Baron, "FDTD modeling of digital signal propagation in 3-D circuits with passive and active loads", IEEE Trans. Microwave Theory Tech., vol. 42, pp.  1514-1523, Aug.  1994.
  11. K. S. Yee, "Numerical solution of initial boundary value problems involving Maxwell's equations in isotropic media", IEEE Trans. Antennas Propagat., vol. AP-14, pp.  302-307, Mar.  1966.
  12. A. Taflove, Computational Electrodynamics: The Finite-Difference Time-Domain Method, Norwood, MA: Artech House, 1995.
  13. C. A. Balanis, Advanced Engineering Electromagnetics, New York: Wiley, 1989.