2000 IEEE. Personal use of this material is permitted. However, permission to reprint/republish this material for advertising or promotional purposes or for creating new collective works for resale or redistribution to servers or lists, or to reuse any copyrighted component of this work in other works must be obtained from the IEEE.

IEEE Transactions on Microwave Theory and Techniques
Volume 48 Number 12, December 2000

Table of Contents for this issue

Complete paper in PDF format

Optimal Shape Design of Microwave Device Using FDTD and Design Sensitivity Analysis

Young-Seek Chung, Changyul Cheon, Member, IEEE Il-han Park and Song-yop Hahn Senior Member, IEEE

Page 2289.

Abstract:

In this paper, a novel optimal shape design method is proposed using the finite-difference time-domain (FDTD) method and the design sensitivity analysis to obtain broad-band characteristics of microwave devices. In shape design problem, the nodes that describe the shape of geometry to be optimized are taken as design variables. The design sensitivity is evaluated using the adjoint variable equation that is obtained from a terminal-value problem. The adjoint equation can be solved by the FDTD technique with the backward time scheme. With this method, a Ka-band unilateral fin line is tested to show validity.

References

  1. E. J. Haug, K. K. Choi and V. Komkov, Design Sensitivity Analysis of Structural System, New York: Academic, 1986.
  2. H.-B. Lee, "Computer aided optimal design methods for waveguide structures", Ph.D. dissertation, Seoul Nat. Univ., Seoul, Korea, 1995.
  3. Y. Lee, C. Cheon and H. Kim, "Shape optimization of W/G structure for uniform field illumination", IEEE Trans. Magn. , vol. 34, pp.  3584-3587, May  1998.
  4. H. Lee, H. Jung, S. Hahn, C. Cheon and K. Lee, "Shape optimization of H -plane waveguide tee junction using edge finite element method", IEEE Trans. Magn., vol. 31, pp.  1928-1931, Mar.  1995.
  5. A. Taflove, Computational Electrodynamics: The Finite-Difference Time-Domain Method, Norwood, MA: Artech House, 1995.
  6. S. D. Gedney, "A comparison of the performance of finite difference time-domain, finite element time-domain and discrete surface integral equation methods on high performance parallel computers", in IEEE AP-S Int. Symp. Dig., vol. 1, 1994, pp.  384- 387. 
  7. S. D. Gedney, F. S. Lansing and D. L. Rascoe, "Full wave analysis of microwave monolithic circuit devices using a generalized Yee-algorithm based on an unstructured grid", IEEE Trans. Microwave Theory Tech., vol. 44, pp.  1393-1400, Aug.  1996.
  8. J. B. Schneider, C. L. Wagner and O. M. Ramahi, "Implementation of transparent sources in FDTD simulations", IEEE Trans. Antennas Propagat., vol. 46, pp.  1159-1168,  Aug.  1998.
  9. J. P. Berenger, "A perfectly matched layer for the absorption of electromagnetic waves", J. Comput. Phys., vol. 114, pp.  185-200, 1994.
  10. I.-H. Park, I.-G. Kwak, H.-B. Lee, S.-Y. Hahn and K.-S. Lee, "Design sensitivity analysis for transient Eddy current problems using finite element discretization and adjoint variable method", IEEE Trans. Magn., vol. 32, pp.  1242-1245, Mar.  1995 .
  11. A. E. Bryson and Y. C. Ho, Applied Optimal Control, Bristol, PA: Hemisphere, 1975.
  12. A. C. Paul, A. Dutta and C. V. Ramakrishnan, "Accurate computation of design sensitivities for dynamically loaded structures with displacement constraints", AIAA J. , vol. 34, no. 8, pp.  1670-1677, 1996.
  13. D. N. Buechler, D. H. Roper, C. H. Durney and D. A. Christensen, "Modeling sources in the FDTD formulation and their use in quantifying source and boundary condition errors", IEEE Trans. Microwave Theory Tech., vol. 43, pp.  810-814, Apr.  1995.
  14. N. Madsen, "Divergence preserving discrete surface integral methods for Maxwell's equations using nonorthogonal unstructured grids", J. Comput. Phys., vol. 119, no. 1, pp.  34-45, 1995.
  15. Y. S. Chung, J. Ryu, C. Cheon, I. H. Park and S. Y. Hahn, "Optimal design method for microwave device using time domain method and design sensitivity analysis: Part I. FETD case", in Proc. IEEE CEFC, 2000, p.  257. 
  16. P. J. Meier, "Millimeter integrated circuits suspended in the E -plane of rectangular waveguide", IEEE Trans. Microwave Theory Tech., vol. MTT-26, pp.  726 -733, Oct.  1978.
  17. B. Bhat and S. K. Koul, Analysis, Design and Applications of Fin Lines, Norwood, MA: Artech House, 1987.
  18. C. A. W. Vale and P. Meyer, "Designing high-performance fin-line tapers with vector-based optimization", IEEE Trans. Microwave Theory Tech., vol. 47, pp.  2467-2472, Dec.  1999.
  19. T. Itoh, G. Pelosi and P. P. Silverster, Finite Element Software for Microwave Engineering, New York: Wiley, 1996.
  20. C. Sung-Hsien, R. Coccioli, Q. Yongxi and T. Itoh, "A global finite-element time-domain analysis of active nonlinear microwave circuits", IEEE Trans. Microwave Theory Tech., vol. 47, pp.  2410-2416, Dec.  1999.
  21. A. Nicolas, L. Nicolas and C. Vollaire, "An explicit 2D finite element time domain scheme for electromagnetic wave propagation", IEEE Trans. Magn., vol. 35, pp.  1538-1541,  May  1999.
  22. K. S. Komisarek, N. N. Wang, A. K. Dominek and R. Hann, "An investigation of new FETD/ABC methods of computation of scattering from three-dimensional material objects-An investigation of new FETD/ABC methods of computation of scattering from three-dimensional material objects", IEEE Trans. Antennas Propagat., vol. 47, pp.  1579-1585,  Oct.  1999.
  23. C.-T. Hwang and R.-B. Wu, "Treating late-time instability of hybrid finite-element/finite-difference time-domain method", IEEE Trans. Antennas Propagat., vol. 47, pp.  227-232,  Feb.  1999.
  24. K. Dongsoo, L. Hong-Bae and T. Itoh, "A hybrid full-wave analysis of via hole grounds using finite difference and finite element time domain methods", in IEEE MTT-S Int. Microwave Symp. Dig., vol. 1, 1997, pp.  89-92. 
  25. U. Navsarlwala and S. D. Gedney, "An implicit finite element time-domain method with unconditional stability", in IEEE AP-S Int. Symp. Dig., vol. 1, 1995, pp.  88-91. 
  26. K. C. Gupta, R. Garg, I. Bahl and P. Bhartia, Microstrip Lines and Slotlines, Norwood, MA: Artech House, 1996.
  27. J. Jin, The Finite Element Method in Electromagnetics, New York: Wiley, 1993.
  28. R. E. Collin, Foundations for Microwave Engineering, New York: McGraw-Hill, 1992.