2000 IEEE. Personal use of this material is permitted. However, permission to reprint/republish this material for advertising or promotional purposes or for creating new collective works for resale or redistribution to servers or lists, or to reuse any copyrighted component of this work in other works must be obtained from the IEEE.

IEEE Transactions on Microwave Theory and Techniques
Volume 48 Number 12, December 2000

Table of Contents for this issue

Complete paper in PDF format

An Improved Deep Submicrometer MOSFET RF Nonlinear Model with New Breakdown Current Model and Drain-to-Substrate Nonlinear Coupling

Deukhyoun Heo, Edward Gebara, Yi-Jan Emery Chen, Seung-yup Yoo, Michael Hamai, Youngsuk Suh, Member, IEEE and Joy Laskar Member, IEEE

Page 2361.

Abstract:

An improved deep submicrometer (0.25 µ m) MOSFET radio-frequency (RF) large signal model that incorporates a new breakdown current model and drain-to-substrate nonlinear coupling was developed and investigated using various experiments. An accurate breakdown model is required for deep submicrometer MOSFETs due to their relatively low breakdown voltage. For the first time, this RF nonlinear model incorporates the breakdown voltage turnover trend into a continuously differentiable channel current model and a new nonlinear coupling circuit between the drain and the lossy substrate. The robustness of the model is verified with measured pulsed I-V, S-parameters, power characteristics, harmonic distortion, and intermodulation distortion levels at different input and output termination conditions, operating biases, and frequencies.

References

  1. C. Raynaud, J. Gautier, G. Guegan, M. Lerme, E. Playez and G. Dambrine, "High-frequency performance of submicrometer channel length silicon MOSFETs", IEEE Electron Device Lett., vol. 12, pp.  667-669, May  1991.
  2. C. Dragon, J. Costa, D. Lamey, D. Ngo and W. Burger, "A silicon MOS process for integrated power amplifiers", in Proc. IEEE Microwave and Millimeter Wave Monolithic Circuits Symp. , 1996, pp.  189-192. 
  3. T. Ohguro, E. Morifuji, M. Saito, M. Ono, T. Yoshitomi, H. S. Momose, N. Ito and H. Iwai, "0.2 µ m analog CMOS with very low noise figure at 2 GHz operation", in VLSI Tech. Symp. Dig., May 1997, pp.  73-74. 
  4. W. R. Curtice and R. L. Camisa, "Self-consistent GaAs FET models for amplifier design and device diagnostics", IEEE Trans. Microwave Theory Tech., vol. MTT-32, pp.  1573-1578, Dec.  1984.
  5. V. I. Cojocaru and T. Brazil, "A scalable general-purpose model for microwave FET's including DC/AC dispersion effects", IEEE Trans. Microwave Theory Tech., vol. 45, pp.  2248-2255, Dec.  1997.
  6. R. Velghe, D. B. M. Klaassen and F. M. Klaassen, "Compact MOS modeling for analog circuit simulation", in IEDM Tech. Dig., 1993, pp.  484-488. 
  7. Y. Cheng, M. C. Jeng, Z. Liu, J. Huang, M. Chan, K. Chen, P. K. Ko and C. Hu, "A physical and scalable I-V model in BSIM3v3 for analog/digital circuit simulations", IEEE Trans. Electron Devices, vol. 44, no. 2, pp.  277-287, 1997.
  8. Y. J. Chan, C. H. Huang, C. C. Weng and B. K. Liew, "Characteristics of deep-submicrometer MOSFET and its empirical nonlinear RF model", IEEE Trans. Microwave Theory Tech., vol. 46, pp.  611-615, May  1998.
  9. C. E. Biber, M. L. Schmatz, T. Morf, U. Lott and W. Bächtold, "A nonlinear microwave MOSFET model for Spice simulators", IEEE Trans. Microwave Theory Tech., vol. 46, pp.  604-610, May  1998.
  10. D. Heo, E. Chen, E. Gebara, S. Yoo, J. Laskar and T. Anderson, "Temperature dependent MOSFET RF large signal model incorporating self heating effects", in IEEE MTT-S Dig., Anaheim, CA, 1999, pp.  415- 418. 
  11. W. R. Curtice, J. A. Pla, D. Bridges, T. Liang and E. E. Shumate, "A new dynamic electro-thermal nonlinear model for silicon RF LDMOS FETs", in IEEE MTT-S Dig., Anaheim, CA, 1999, pp.  419- 422. 
  12. C. E. Biber, T. Morf, H. Benedickter, U. Lott and W. Bächtold, "Microwave frequency measurements and modeling of MOSFET's on low resistivity silicon substrates", in Proc. 1996 IEEE Int. Conf. Microelectronic Test Structures, vol. 9, Mar. 1996, pp.  211-215. 
  13. M. Miller, T. Dinh and E. Shumate, "A new empirical large signal model for silicon RF LDMOS FETs", in IEEE MTT Symp. Technologies for Wireless Applications Dig., Vancouver, Canada, 1997, pp.  19-22. 
  14. T. Toyabe, K. Yamaguchi, S. Asai and M. S. Mock, "A numerical model of avalanche breakdown in MOSFETs", IEEE Trans. Electron Devices, vol. 25, pp.  825 -832, 1978.
  15. S. E. Laux and F. H. Gaensslen, "A study of channel avalanche breakdown in scaled n-MOSFETs", IEEE Trans. Electron Devices, vol. 34, pp.  1066-1073,  1987.
  16. M. P. Guedes and P. C. Chan, "A circuit simulation model for bipolar-induced breakdown in MOSFET", IEEE Trans. Computer-Aided Design, vol. 7, pp.  289-294,  1988.
  17. H. Wong, "A physically-based MOS transistor avalanche breakdown model", IEEE Trans. Electron Devices, vol. 42, pp.  2197-2202,  Dec.  1995.
  18. D. R. Pehlke, M. Schroter, A. Burstein, M. Matloubian and M. F. Chang, "High-frequency application of MOS compact models and their development for scalable RF model libraries", in Proc. IEEE Custom Integrated Circuit Conf., 1998, pp.  219-222. 
  19. S. F. Tin and K. Mayaram, "Substrate network modeling for CMOS RF circuit simulation", in Proc. IEEE Custom Integrated Circuit Conf., 1999, pp.  583-586. 
  20. I. Angelov, H. Zirath and N. Rorsman, "A new empirical nonlinear model for HEMT and MESFET devices", IEEE Trans. Microwave Theory Tech., vol. 40, pp.  2258-2266, Dec.  1992.
  21. F. Filicori, G. Vannini, A. Santarelli, A. M. Sánchez, A. Tazón and Y. Newport, "Empirical modeling of low-frequency dispersive effects due to traps and thermal phenomena in III-V FETs", IEEE Trans. Microwave Theory Tech., vol. 43, pp.  2972 -2981, Dec.  1995.
  22. N. D. Arora, L. T. Su, B. S. Doyle and D. A. Antoniadis, "Modeling the I-V characteristics of fully-depleted SOI MOSFET's including self heating", in Proc. Int. SOI Conf., 1994, pp.  19-20. 
  23. J. P. Teyssier, J. P. Viaud and R. Quéré, "A new nonlinear I(V) model for FET devices including breakdown effects", IEEE Microwave Guided Wave Lett., vol. 4, pp.  104-106, Apr.  1994.
  24. C. H. Kim, C. S. Kim, H. K. Yu and K. S. Nam, "Unique extraction of substrate parameters of common-source MOSFETs", IEEE Microwave Guided Wave Lett., vol. 9, pp.  108-110,  Mar.  1999.