2000 IEEE. Personal use of this material is permitted. However, permission to reprint/republish this material for advertising or promotional purposes or for creating new collective works for resale or redistribution to servers or lists, or to reuse any copyrighted component of this work in other works must be obtained from the IEEE.

IEEE Transactions on Microwave Theory and Techniques
Volume 48 Number 12, December 2000

Table of Contents for this issue

Complete paper in PDF format

Fiber-Edge Electrooptic/Magnetooptic Probe for Spectral-Domain Analysis of Electromagnetic Field

Shinichi Wakana, Member, IEEE Takuya Ohara, Mari Abe, Etsushi Yamazaki, Masato Kishi and Masahiro Tsuchiya Member, IEEE

Page 2611.

Abstract:

We propose a new class of an electromagnetic-field probing scheme for microwave planar circuit diagnosis. The measurement principle is based on the electrooptic/magnetooptic effects of crystals glued at optical fiber facets. We have combined the concept of those fiber-edge probes with a fiber-optic RF spectrum analyzing system containing a continuous-wave semiconductor laser source, a fast photodetector, and an RF spectrum analyzer to realize a highly sensitive measurement equipment of local impedance. Electromagnetic-field intensity on a microstrip transmission line has been measured in the frequency domain, where voltage and current amplitudes have been independently investigated with sensitivities of 16 mV/Hz-1/2 and 0.33 mA/Hz-1/2, respectively. In addition,it has been shown that the former value can be improved to be 0.7 mV/Hz-1/2 or smaller by the resonant cavity enhancement effect.

References

  1. K. Yang, G. David, S. V. Robertson, J. F. Whitaker and L. P. B. Katehi, "Electro-optic mapping of near-field distributions in integrated microwave circuits", IEEE Trans. Microwave Theory Tech., vol. 46, pp.  2338-2343, Dec.  1998.
  2. G. David, K. Yang, W. Wang, L. W. Pearson, J. F. Whitaker and L. P. B. Katehi, "3D near-field analysis of a 4 × 4 grid oscillator using an electro-optic field imaging system", in Proc. 28th EuMC'98,, pp.  346-351. 
  3. G. David, D. Jäger, R. Tempel and I. Wolff, "Analysis of microwave propagation effects using two-dimensional electrooptic field mapping techniques", Opt. Quantum Electron., vol. 28, pp.  919-932, 1996.
  4. K. Kamogawa, I. Toyoda, K. Nishikawa and T. Tokumitsu, "Characterization of a monolithic slot antenna using an electrooptic sampling technique", IEEE Microwave Guided Wave Lett., vol. 4, pp.  414-416, Dec.  1994.
  5. D. Le Quang, D. Erasme and B. Huyart, "Fabry-Perot enhanced real-time electro-optic probing of MMICs", Electron. Lett., vol. 29, pp.  498-499, 1993.
  6. D. Le Quang, D. Erasme and B. Huyart, "MMIC-calibrated probing by CW electrooptic modulation", IEEE Trans. Microwave Theory Tech., vol. 43, pp.  1031-1036, May  1995.
  7. T. Ohara, M. Abe, S. Wakana, M. Kishi, M. Tsuchiya and S. Kawasaki, "Two-dimensional field mapping of microstrip lines with a band pass filter or a photonic bandgap structure by fiber-optic EO spectrum analysis system", in Int. Topical Meeting Microwave Photon. , Oxford, U.K.,Sept. 2000, pp.  210-213. 
  8. P. O. Mueller, S. B. Allston, A. J. Vickers and D. Erasme, "An external electrooptic sampling technique based on the Fabry-Perot effect", IEEE J. Quantum Electron. , vol. 35, pp.  7-11, Jan.  1999.
  9. A. Yariv and P. Yeh, 8.2 Optical Waves in Crystal, New York: Wiley, 1984.